summaryrefslogtreecommitdiff
path: root/school/node_modules/node-forge/js/rsa.js
blob: 90f8c0a954fc1d129b6d348199793cc1422f6917 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
/**
 * Javascript implementation of basic RSA algorithms.
 *
 * @author Dave Longley
 *
 * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 *
 * The only algorithm currently supported for PKI is RSA.
 *
 * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
 * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
 * and a subjectPublicKey of type bit string.
 *
 * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
 * for the algorithm, if any. In the case of RSA, there aren't any.
 *
 * SubjectPublicKeyInfo ::= SEQUENCE {
 *   algorithm AlgorithmIdentifier,
 *   subjectPublicKey BIT STRING
 * }
 *
 * AlgorithmIdentifer ::= SEQUENCE {
 *   algorithm OBJECT IDENTIFIER,
 *   parameters ANY DEFINED BY algorithm OPTIONAL
 * }
 *
 * For an RSA public key, the subjectPublicKey is:
 *
 * RSAPublicKey ::= SEQUENCE {
 *   modulus            INTEGER,    -- n
 *   publicExponent     INTEGER     -- e
 * }
 *
 * PrivateKeyInfo ::= SEQUENCE {
 *   version                   Version,
 *   privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier,
 *   privateKey                PrivateKey,
 *   attributes           [0]  IMPLICIT Attributes OPTIONAL
 * }
 *
 * Version ::= INTEGER
 * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
 * PrivateKey ::= OCTET STRING
 * Attributes ::= SET OF Attribute
 *
 * An RSA private key as the following structure:
 *
 * RSAPrivateKey ::= SEQUENCE {
 *   version Version,
 *   modulus INTEGER, -- n
 *   publicExponent INTEGER, -- e
 *   privateExponent INTEGER, -- d
 *   prime1 INTEGER, -- p
 *   prime2 INTEGER, -- q
 *   exponent1 INTEGER, -- d mod (p-1)
 *   exponent2 INTEGER, -- d mod (q-1)
 *   coefficient INTEGER -- (inverse of q) mod p
 * }
 *
 * Version ::= INTEGER
 *
 * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
 */
(function() {
function initModule(forge) {
/* ########## Begin module implementation ########## */

if(typeof BigInteger === 'undefined') {
  var BigInteger = forge.jsbn.BigInteger;
}

// shortcut for asn.1 API
var asn1 = forge.asn1;

/*
 * RSA encryption and decryption, see RFC 2313.
 */
forge.pki = forge.pki || {};
forge.pki.rsa = forge.rsa = forge.rsa || {};
var pki = forge.pki;

// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];

// validator for a PrivateKeyInfo structure
var privateKeyValidator = {
  // PrivateKeyInfo
  name: 'PrivateKeyInfo',
  tagClass: asn1.Class.UNIVERSAL,
  type: asn1.Type.SEQUENCE,
  constructed: true,
  value: [{
    // Version (INTEGER)
    name: 'PrivateKeyInfo.version',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyVersion'
  }, {
    // privateKeyAlgorithm
    name: 'PrivateKeyInfo.privateKeyAlgorithm',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.SEQUENCE,
    constructed: true,
    value: [{
      name: 'AlgorithmIdentifier.algorithm',
      tagClass: asn1.Class.UNIVERSAL,
      type: asn1.Type.OID,
      constructed: false,
      capture: 'privateKeyOid'
    }]
  }, {
    // PrivateKey
    name: 'PrivateKeyInfo',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.OCTETSTRING,
    constructed: false,
    capture: 'privateKey'
  }]
};

// validator for an RSA private key
var rsaPrivateKeyValidator = {
  // RSAPrivateKey
  name: 'RSAPrivateKey',
  tagClass: asn1.Class.UNIVERSAL,
  type: asn1.Type.SEQUENCE,
  constructed: true,
  value: [{
    // Version (INTEGER)
    name: 'RSAPrivateKey.version',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyVersion'
  }, {
    // modulus (n)
    name: 'RSAPrivateKey.modulus',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyModulus'
  }, {
    // publicExponent (e)
    name: 'RSAPrivateKey.publicExponent',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyPublicExponent'
  }, {
    // privateExponent (d)
    name: 'RSAPrivateKey.privateExponent',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyPrivateExponent'
  }, {
    // prime1 (p)
    name: 'RSAPrivateKey.prime1',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyPrime1'
  }, {
    // prime2 (q)
    name: 'RSAPrivateKey.prime2',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyPrime2'
  }, {
    // exponent1 (d mod (p-1))
    name: 'RSAPrivateKey.exponent1',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyExponent1'
  }, {
    // exponent2 (d mod (q-1))
    name: 'RSAPrivateKey.exponent2',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyExponent2'
  }, {
    // coefficient ((inverse of q) mod p)
    name: 'RSAPrivateKey.coefficient',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'privateKeyCoefficient'
  }]
};

// validator for an RSA public key
var rsaPublicKeyValidator = {
  // RSAPublicKey
  name: 'RSAPublicKey',
  tagClass: asn1.Class.UNIVERSAL,
  type: asn1.Type.SEQUENCE,
  constructed: true,
  value: [{
    // modulus (n)
    name: 'RSAPublicKey.modulus',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'publicKeyModulus'
  }, {
    // publicExponent (e)
    name: 'RSAPublicKey.exponent',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.INTEGER,
    constructed: false,
    capture: 'publicKeyExponent'
  }]
};

// validator for an SubjectPublicKeyInfo structure
// Note: Currently only works with an RSA public key
var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
  name: 'SubjectPublicKeyInfo',
  tagClass: asn1.Class.UNIVERSAL,
  type: asn1.Type.SEQUENCE,
  constructed: true,
  captureAsn1: 'subjectPublicKeyInfo',
  value: [{
    name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.SEQUENCE,
    constructed: true,
    value: [{
      name: 'AlgorithmIdentifier.algorithm',
      tagClass: asn1.Class.UNIVERSAL,
      type: asn1.Type.OID,
      constructed: false,
      capture: 'publicKeyOid'
    }]
  }, {
    // subjectPublicKey
    name: 'SubjectPublicKeyInfo.subjectPublicKey',
    tagClass: asn1.Class.UNIVERSAL,
    type: asn1.Type.BITSTRING,
    constructed: false,
    value: [{
      // RSAPublicKey
      name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
      tagClass: asn1.Class.UNIVERSAL,
      type: asn1.Type.SEQUENCE,
      constructed: true,
      optional: true,
      captureAsn1: 'rsaPublicKey'
    }]
  }]
};

/**
 * Wrap digest in DigestInfo object.
 *
 * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
 *
 * DigestInfo ::= SEQUENCE {
 *   digestAlgorithm DigestAlgorithmIdentifier,
 *   digest Digest
 * }
 *
 * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
 * Digest ::= OCTET STRING
 *
 * @param md the message digest object with the hash to sign.
 *
 * @return the encoded message (ready for RSA encrytion)
 */
var emsaPkcs1v15encode = function(md) {
  // get the oid for the algorithm
  var oid;
  if(md.algorithm in pki.oids) {
    oid = pki.oids[md.algorithm];
  } else {
    var error = new Error('Unknown message digest algorithm.');
    error.algorithm = md.algorithm;
    throw error;
  }
  var oidBytes = asn1.oidToDer(oid).getBytes();

  // create the digest info
  var digestInfo = asn1.create(
    asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
  var digestAlgorithm = asn1.create(
    asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
  digestAlgorithm.value.push(asn1.create(
    asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
  digestAlgorithm.value.push(asn1.create(
    asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
  var digest = asn1.create(
    asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
    false, md.digest().getBytes());
  digestInfo.value.push(digestAlgorithm);
  digestInfo.value.push(digest);

  // encode digest info
  return asn1.toDer(digestInfo).getBytes();
};

/**
 * Performs x^c mod n (RSA encryption or decryption operation).
 *
 * @param x the number to raise and mod.
 * @param key the key to use.
 * @param pub true if the key is public, false if private.
 *
 * @return the result of x^c mod n.
 */
var _modPow = function(x, key, pub) {
  if(pub) {
    return x.modPow(key.e, key.n);
  }

  if(!key.p || !key.q) {
    // allow calculation without CRT params (slow)
    return x.modPow(key.d, key.n);
  }

  // pre-compute dP, dQ, and qInv if necessary
  if(!key.dP) {
    key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
  }
  if(!key.dQ) {
    key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
  }
  if(!key.qInv) {
    key.qInv = key.q.modInverse(key.p);
  }

  /* Chinese remainder theorem (CRT) states:

    Suppose n1, n2, ..., nk are positive integers which are pairwise
    coprime (n1 and n2 have no common factors other than 1). For any
    integers x1, x2, ..., xk there exists an integer x solving the
    system of simultaneous congruences (where ~= means modularly
    congruent so a ~= b mod n means a mod n = b mod n):

    x ~= x1 mod n1
    x ~= x2 mod n2
    ...
    x ~= xk mod nk

    This system of congruences has a single simultaneous solution x
    between 0 and n - 1. Furthermore, each xk solution and x itself
    is congruent modulo the product n = n1*n2*...*nk.
    So x1 mod n = x2 mod n = xk mod n = x mod n.

    The single simultaneous solution x can be solved with the following
    equation:

    x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.

    Where x is less than n, xi = x mod ni.

    For RSA we are only concerned with k = 2. The modulus n = pq, where
    p and q are coprime. The RSA decryption algorithm is:

    y = x^d mod n

    Given the above:

    x1 = x^d mod p
    r1 = n/p = q
    s1 = q^-1 mod p
    x2 = x^d mod q
    r2 = n/q = p
    s2 = p^-1 mod q

    So y = (x1r1s1 + x2r2s2) mod n
         = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n

    According to Fermat's Little Theorem, if the modulus P is prime,
    for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
    Since A is not divisible by P it follows that if:
    N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:

    A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
    to calculate). In order to calculate x^d mod p more quickly the
    exponent d mod (p - 1) is stored in the RSA private key (the same
    is done for x^d mod q). These values are referred to as dP and dQ
    respectively. Therefore we now have:

    y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n

    Since we'll be reducing x^dP by modulo p (same for q) we can also
    reduce x by p (and q respectively) before hand. Therefore, let

    xp = ((x mod p)^dP mod p), and
    xq = ((x mod q)^dQ mod q), yielding:

    y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n

    This can be further reduced to a simple algorithm that only
    requires 1 inverse (the q inverse is used) to be used and stored.
    The algorithm is called Garner's algorithm. If qInv is the
    inverse of q, we simply calculate:

    y = (qInv*(xp - xq) mod p) * q + xq

    However, there are two further complications. First, we need to
    ensure that xp > xq to prevent signed BigIntegers from being used
    so we add p until this is true (since we will be mod'ing with
    p anyway). Then, there is a known timing attack on algorithms
    using the CRT. To mitigate this risk, "cryptographic blinding"
    should be used. This requires simply generating a random number r between
    0 and n-1 and its inverse and multiplying x by r^e before calculating y
    and then multiplying y by r^-1 afterwards.
  */

  // cryptographic blinding
  var r;
  do {
    r = new BigInteger(
      forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
      16).mod(key.n);
  } while(r.equals(BigInteger.ZERO));
  x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);

  // calculate xp and xq
  var xp = x.mod(key.p).modPow(key.dP, key.p);
  var xq = x.mod(key.q).modPow(key.dQ, key.q);

  // xp must be larger than xq to avoid signed bit usage
  while(xp.compareTo(xq) < 0) {
    xp = xp.add(key.p);
  }

  // do last step
  var y = xp.subtract(xq)
    .multiply(key.qInv).mod(key.p)
    .multiply(key.q).add(xq);

  // remove effect of random for cryptographic blinding
  y = y.multiply(r.modInverse(key.n)).mod(key.n);

  return y;
};

/**
 * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
 * 'encrypt' on a public key object instead.
 *
 * Performs RSA encryption.
 *
 * The parameter bt controls whether to put padding bytes before the
 * message passed in. Set bt to either true or false to disable padding
 * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
 * signaling whether the encryption operation is a public key operation
 * (i.e. encrypting data) or not, i.e. private key operation (data signing).
 *
 * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
 * (for signing) or 0x02 (for encryption). The key operation mode (private
 * or public) is derived from this flag in that case).
 *
 * @param m the message to encrypt as a byte string.
 * @param key the RSA key to use.
 * @param bt for PKCS#1 v1.5 padding, the block type to use
 *   (0x01 for private key, 0x02 for public),
 *   to disable padding: true = public key, false = private key.
 *
 * @return the encrypted bytes as a string.
 */
pki.rsa.encrypt = function(m, key, bt) {
  var pub = bt;
  var eb;

  // get the length of the modulus in bytes
  var k = Math.ceil(key.n.bitLength() / 8);

  if(bt !== false && bt !== true) {
    // legacy, default to PKCS#1 v1.5 padding
    pub = (bt === 0x02);
    eb = _encodePkcs1_v1_5(m, key, bt);
  } else {
    eb = forge.util.createBuffer();
    eb.putBytes(m);
  }

  // load encryption block as big integer 'x'
  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
  var x = new BigInteger(eb.toHex(), 16);

  // do RSA encryption
  var y = _modPow(x, key, pub);

  // convert y into the encrypted data byte string, if y is shorter in
  // bytes than k, then prepend zero bytes to fill up ed
  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
  var yhex = y.toString(16);
  var ed = forge.util.createBuffer();
  var zeros = k - Math.ceil(yhex.length / 2);
  while(zeros > 0) {
    ed.putByte(0x00);
    --zeros;
  }
  ed.putBytes(forge.util.hexToBytes(yhex));
  return ed.getBytes();
};

/**
 * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
 * 'verify' on a public key object instead.
 *
 * Performs RSA decryption.
 *
 * The parameter ml controls whether to apply PKCS#1 v1.5 padding
 * or not.  Set ml = false to disable padding removal completely
 * (in order to handle e.g. EMSA-PSS later on) and simply pass back
 * the RSA encryption block.
 *
 * @param ed the encrypted data to decrypt in as a byte string.
 * @param key the RSA key to use.
 * @param pub true for a public key operation, false for private.
 * @param ml the message length, if known, false to disable padding.
 *
 * @return the decrypted message as a byte string.
 */
pki.rsa.decrypt = function(ed, key, pub, ml) {
  // get the length of the modulus in bytes
  var k = Math.ceil(key.n.bitLength() / 8);

  // error if the length of the encrypted data ED is not k
  if(ed.length !== k) {
    var error = new Error('Encrypted message length is invalid.');
    error.length = ed.length;
    error.expected = k;
    throw error;
  }

  // convert encrypted data into a big integer
  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
  var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);

  // y must be less than the modulus or it wasn't the result of
  // a previous mod operation (encryption) using that modulus
  if(y.compareTo(key.n) >= 0) {
    throw new Error('Encrypted message is invalid.');
  }

  // do RSA decryption
  var x = _modPow(y, key, pub);

  // create the encryption block, if x is shorter in bytes than k, then
  // prepend zero bytes to fill up eb
  // FIXME: hex conversion inefficient, get BigInteger w/byte strings
  var xhex = x.toString(16);
  var eb = forge.util.createBuffer();
  var zeros = k - Math.ceil(xhex.length / 2);
  while(zeros > 0) {
    eb.putByte(0x00);
    --zeros;
  }
  eb.putBytes(forge.util.hexToBytes(xhex));

  if(ml !== false) {
    // legacy, default to PKCS#1 v1.5 padding
    return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
  }

  // return message
  return eb.getBytes();
};

/**
 * Creates an RSA key-pair generation state object. It is used to allow
 * key-generation to be performed in steps. It also allows for a UI to
 * display progress updates.
 *
 * @param bits the size for the private key in bits, defaults to 2048.
 * @param e the public exponent to use, defaults to 65537 (0x10001).
 * @param [options] the options to use.
 *          prng a custom crypto-secure pseudo-random number generator to use,
 *            that must define "getBytesSync".
 *          algorithm the algorithm to use (default: 'PRIMEINC').
 *
 * @return the state object to use to generate the key-pair.
 */
pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
  // TODO: migrate step-based prime generation code to forge.prime

  // set default bits
  if(typeof(bits) === 'string') {
    bits = parseInt(bits, 10);
  }
  bits = bits || 2048;

  // create prng with api that matches BigInteger secure random
  options = options || {};
  var prng = options.prng || forge.random;
  var rng = {
    // x is an array to fill with bytes
    nextBytes: function(x) {
      var b = prng.getBytesSync(x.length);
      for(var i = 0; i < x.length; ++i) {
        x[i] = b.charCodeAt(i);
      }
    }
  };

  var algorithm = options.algorithm || 'PRIMEINC';

  // create PRIMEINC algorithm state
  var rval;
  if(algorithm === 'PRIMEINC') {
    rval = {
      algorithm: algorithm,
      state: 0,
      bits: bits,
      rng: rng,
      eInt: e || 65537,
      e: new BigInteger(null),
      p: null,
      q: null,
      qBits: bits >> 1,
      pBits: bits - (bits >> 1),
      pqState: 0,
      num: null,
      keys: null
    };
    rval.e.fromInt(rval.eInt);
  } else {
    throw new Error('Invalid key generation algorithm: ' + algorithm);
  }

  return rval;
};

/**
 * Attempts to runs the key-generation algorithm for at most n seconds
 * (approximately) using the given state. When key-generation has completed,
 * the keys will be stored in state.keys.
 *
 * To use this function to update a UI while generating a key or to prevent
 * causing browser lockups/warnings, set "n" to a value other than 0. A
 * simple pattern for generating a key and showing a progress indicator is:
 *
 * var state = pki.rsa.createKeyPairGenerationState(2048);
 * var step = function() {
 *   // step key-generation, run algorithm for 100 ms, repeat
 *   if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
 *     setTimeout(step, 1);
 *   } else {
 *     // key-generation complete
 *     // TODO: turn off progress indicator here
 *     // TODO: use the generated key-pair in "state.keys"
 *   }
 * };
 * // TODO: turn on progress indicator here
 * setTimeout(step, 0);
 *
 * @param state the state to use.
 * @param n the maximum number of milliseconds to run the algorithm for, 0
 *          to run the algorithm to completion.
 *
 * @return true if the key-generation completed, false if not.
 */
pki.rsa.stepKeyPairGenerationState = function(state, n) {
  // set default algorithm if not set
  if(!('algorithm' in state)) {
    state.algorithm = 'PRIMEINC';
  }

  // TODO: migrate step-based prime generation code to forge.prime
  // TODO: abstract as PRIMEINC algorithm

  // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
  // with some minor optimizations and designed to run in steps

  // local state vars
  var THIRTY = new BigInteger(null);
  THIRTY.fromInt(30);
  var deltaIdx = 0;
  var op_or = function(x,y) { return x|y; };

  // keep stepping until time limit is reached or done
  var t1 = +new Date();
  var t2;
  var total = 0;
  while(state.keys === null && (n <= 0 || total < n)) {
    // generate p or q
    if(state.state === 0) {
      /* Note: All primes are of the form:

        30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i

        When we generate a random number, we always align it at 30k + 1. Each
        time the number is determined not to be prime we add to get to the
        next 'i', eg: if the number was at 30k + 1 we add 6. */
      var bits = (state.p === null) ? state.pBits : state.qBits;
      var bits1 = bits - 1;

      // get a random number
      if(state.pqState === 0) {
        state.num = new BigInteger(bits, state.rng);
        // force MSB set
        if(!state.num.testBit(bits1)) {
          state.num.bitwiseTo(
            BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
        }
        // align number on 30k+1 boundary
        state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
        deltaIdx = 0;

        ++state.pqState;
      } else if(state.pqState === 1) {
        // try to make the number a prime
        if(state.num.bitLength() > bits) {
          // overflow, try again
          state.pqState = 0;
          // do primality test
        } else if(state.num.isProbablePrime(
          _getMillerRabinTests(state.num.bitLength()))) {
          ++state.pqState;
        } else {
          // get next potential prime
          state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
        }
      } else if(state.pqState === 2) {
        // ensure number is coprime with e
        state.pqState =
          (state.num.subtract(BigInteger.ONE).gcd(state.e)
          .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
      } else if(state.pqState === 3) {
        // store p or q
        state.pqState = 0;
        if(state.p === null) {
          state.p = state.num;
        } else {
          state.q = state.num;
        }

        // advance state if both p and q are ready
        if(state.p !== null && state.q !== null) {
          ++state.state;
        }
        state.num = null;
      }
    } else if(state.state === 1) {
      // ensure p is larger than q (swap them if not)
      if(state.p.compareTo(state.q) < 0) {
        state.num = state.p;
        state.p = state.q;
        state.q = state.num;
      }
      ++state.state;
    } else if(state.state === 2) {
      // compute phi: (p - 1)(q - 1) (Euler's totient function)
      state.p1 = state.p.subtract(BigInteger.ONE);
      state.q1 = state.q.subtract(BigInteger.ONE);
      state.phi = state.p1.multiply(state.q1);
      ++state.state;
    } else if(state.state === 3) {
      // ensure e and phi are coprime
      if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
        // phi and e are coprime, advance
        ++state.state;
      } else {
        // phi and e aren't coprime, so generate a new p and q
        state.p = null;
        state.q = null;
        state.state = 0;
      }
    } else if(state.state === 4) {
      // create n, ensure n is has the right number of bits
      state.n = state.p.multiply(state.q);

      // ensure n is right number of bits
      if(state.n.bitLength() === state.bits) {
        // success, advance
        ++state.state;
      } else {
        // failed, get new q
        state.q = null;
        state.state = 0;
      }
    } else if(state.state === 5) {
      // set keys
      var d = state.e.modInverse(state.phi);
      state.keys = {
        privateKey: pki.rsa.setPrivateKey(
          state.n, state.e, d, state.p, state.q,
          d.mod(state.p1), d.mod(state.q1),
          state.q.modInverse(state.p)),
        publicKey: pki.rsa.setPublicKey(state.n, state.e)
      };
    }

    // update timing
    t2 = +new Date();
    total += t2 - t1;
    t1 = t2;
  }

  return state.keys !== null;
};

/**
 * Generates an RSA public-private key pair in a single call.
 *
 * To generate a key-pair in steps (to allow for progress updates and to
 * prevent blocking or warnings in slow browsers) then use the key-pair
 * generation state functions.
 *
 * To generate a key-pair asynchronously (either through web-workers, if
 * available, or by breaking up the work on the main thread), pass a
 * callback function.
 *
 * @param [bits] the size for the private key in bits, defaults to 2048.
 * @param [e] the public exponent to use, defaults to 65537.
 * @param [options] options for key-pair generation, if given then 'bits'
 *          and 'e' must *not* be given:
 *          bits the size for the private key in bits, (default: 2048).
 *          e the public exponent to use, (default: 65537 (0x10001)).
 *          workerScript the worker script URL.
 *          workers the number of web workers (if supported) to use,
 *            (default: 2).
 *          workLoad the size of the work load, ie: number of possible prime
 *            numbers for each web worker to check per work assignment,
 *            (default: 100).
 *          e the public exponent to use, defaults to 65537.
 *          prng a custom crypto-secure pseudo-random number generator to use,
 *            that must define "getBytesSync".
 *          algorithm the algorithm to use (default: 'PRIMEINC').
 * @param [callback(err, keypair)] called once the operation completes.
 *
 * @return an object with privateKey and publicKey properties.
 */
pki.rsa.generateKeyPair = function(bits, e, options, callback) {
  // (bits), (options), (callback)
  if(arguments.length === 1) {
    if(typeof bits === 'object') {
      options = bits;
      bits = undefined;
    } else if(typeof bits === 'function') {
      callback = bits;
      bits = undefined;
    }
  } else if(arguments.length === 2) {
    // (bits, e), (bits, options), (bits, callback), (options, callback)
    if(typeof bits === 'number') {
      if(typeof e === 'function') {
        callback = e;
        e = undefined;
      } else if(typeof e !== 'number') {
        options = e;
        e = undefined;
      }
    } else {
      options = bits;
      callback = e;
      bits = undefined;
      e = undefined;
    }
  } else if(arguments.length === 3) {
    // (bits, e, options), (bits, e, callback), (bits, options, callback)
    if(typeof e === 'number') {
      if(typeof options === 'function') {
        callback = options;
        options = undefined;
      }
    } else {
      callback = options;
      options = e;
      e = undefined;
    }
  }
  options = options || {};
  if(bits === undefined) {
    bits = options.bits || 2048;
  }
  if(e === undefined) {
    e = options.e || 0x10001;
  }
  var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
  if(!callback) {
    pki.rsa.stepKeyPairGenerationState(state, 0);
    return state.keys;
  }
  _generateKeyPair(state, options, callback);
};

/**
 * Sets an RSA public key from BigIntegers modulus and exponent.
 *
 * @param n the modulus.
 * @param e the exponent.
 *
 * @return the public key.
 */
pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
  var key = {
    n: n,
    e: e
  };

  /**
   * Encrypts the given data with this public key. Newer applications
   * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
   * legacy applications.
   *
   * @param data the byte string to encrypt.
   * @param scheme the encryption scheme to use:
   *          'RSAES-PKCS1-V1_5' (default),
   *          'RSA-OAEP',
   *          'RAW', 'NONE', or null to perform raw RSA encryption,
   *          an object with an 'encode' property set to a function
   *          with the signature 'function(data, key)' that returns
   *          a binary-encoded string representing the encoded data.
   * @param schemeOptions any scheme-specific options.
   *
   * @return the encrypted byte string.
   */
  key.encrypt = function(data, scheme, schemeOptions) {
    if(typeof scheme === 'string') {
      scheme = scheme.toUpperCase();
    } else if(scheme === undefined) {
      scheme = 'RSAES-PKCS1-V1_5';
    }

    if(scheme === 'RSAES-PKCS1-V1_5') {
      scheme = {
        encode: function(m, key, pub) {
          return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
        }
      };
    } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
      scheme = {
        encode: function(m, key) {
          return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
        }
      };
    } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
      scheme = { encode: function(e) { return e; } };
    } else if(typeof scheme === 'string') {
      throw new Error('Unsupported encryption scheme: "' + scheme + '".');
    }

    // do scheme-based encoding then rsa encryption
    var e = scheme.encode(data, key, true);
    return pki.rsa.encrypt(e, key, true);
  };

  /**
   * Verifies the given signature against the given digest.
   *
   * PKCS#1 supports multiple (currently two) signature schemes:
   * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
   *
   * By default this implementation uses the "old scheme", i.e.
   * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
   * signature is an OCTET STRING that holds a DigestInfo.
   *
   * DigestInfo ::= SEQUENCE {
   *   digestAlgorithm DigestAlgorithmIdentifier,
   *   digest Digest
   * }
   * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
   * Digest ::= OCTET STRING
   *
   * To perform PSS signature verification, provide an instance
   * of Forge PSS object as the scheme parameter.
   *
   * @param digest the message digest hash to compare against the signature,
   *          as a binary-encoded string.
   * @param signature the signature to verify, as a binary-encoded string.
   * @param scheme signature verification scheme to use:
   *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
   *          a Forge PSS object for RSASSA-PSS,
   *          'NONE' or null for none, DigestInfo will not be expected, but
   *            PKCS#1 v1.5 padding will still be used.
   *
   * @return true if the signature was verified, false if not.
   */
   key.verify = function(digest, signature, scheme) {
     if(typeof scheme === 'string') {
       scheme = scheme.toUpperCase();
     } else if(scheme === undefined) {
       scheme = 'RSASSA-PKCS1-V1_5';
     }

     if(scheme === 'RSASSA-PKCS1-V1_5') {
       scheme = {
         verify: function(digest, d) {
           // remove padding
           d = _decodePkcs1_v1_5(d, key, true);
           // d is ASN.1 BER-encoded DigestInfo
           var obj = asn1.fromDer(d);
           // compare the given digest to the decrypted one
           return digest === obj.value[1].value;
         }
       };
     } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
       scheme = {
         verify: function(digest, d) {
           // remove padding
           d = _decodePkcs1_v1_5(d, key, true);
           return digest === d;
         }
       };
     }

     // do rsa decryption w/o any decoding, then verify -- which does decoding
     var d = pki.rsa.decrypt(signature, key, true, false);
     return scheme.verify(digest, d, key.n.bitLength());
  };

  return key;
};

/**
 * Sets an RSA private key from BigIntegers modulus, exponent, primes,
 * prime exponents, and modular multiplicative inverse.
 *
 * @param n the modulus.
 * @param e the public exponent.
 * @param d the private exponent ((inverse of e) mod n).
 * @param p the first prime.
 * @param q the second prime.
 * @param dP exponent1 (d mod (p-1)).
 * @param dQ exponent2 (d mod (q-1)).
 * @param qInv ((inverse of q) mod p)
 *
 * @return the private key.
 */
pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
  n, e, d, p, q, dP, dQ, qInv) {
  var key = {
    n: n,
    e: e,
    d: d,
    p: p,
    q: q,
    dP: dP,
    dQ: dQ,
    qInv: qInv
  };

  /**
   * Decrypts the given data with this private key. The decryption scheme
   * must match the one used to encrypt the data.
   *
   * @param data the byte string to decrypt.
   * @param scheme the decryption scheme to use:
   *          'RSAES-PKCS1-V1_5' (default),
   *          'RSA-OAEP',
   *          'RAW', 'NONE', or null to perform raw RSA decryption.
   * @param schemeOptions any scheme-specific options.
   *
   * @return the decrypted byte string.
   */
  key.decrypt = function(data, scheme, schemeOptions) {
    if(typeof scheme === 'string') {
      scheme = scheme.toUpperCase();
    } else if(scheme === undefined) {
      scheme = 'RSAES-PKCS1-V1_5';
    }

    // do rsa decryption w/o any decoding
    var d = pki.rsa.decrypt(data, key, false, false);

    if(scheme === 'RSAES-PKCS1-V1_5') {
      scheme = { decode: _decodePkcs1_v1_5 };
    } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
      scheme = {
        decode: function(d, key) {
          return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
        }
      };
    } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
      scheme = { decode: function(d) { return d; } };
    } else {
      throw new Error('Unsupported encryption scheme: "' + scheme + '".');
    }

    // decode according to scheme
    return scheme.decode(d, key, false);
  };

  /**
   * Signs the given digest, producing a signature.
   *
   * PKCS#1 supports multiple (currently two) signature schemes:
   * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
   *
   * By default this implementation uses the "old scheme", i.e.
   * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
   * an instance of Forge PSS object as the scheme parameter.
   *
   * @param md the message digest object with the hash to sign.
   * @param scheme the signature scheme to use:
   *          'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
   *          a Forge PSS object for RSASSA-PSS,
   *          'NONE' or null for none, DigestInfo will not be used but
   *            PKCS#1 v1.5 padding will still be used.
   *
   * @return the signature as a byte string.
   */
  key.sign = function(md, scheme) {
    /* Note: The internal implementation of RSA operations is being
      transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
      code like the use of an encoding block identifier 'bt' will eventually
      be removed. */

    // private key operation
    var bt = false;

    if(typeof scheme === 'string') {
      scheme = scheme.toUpperCase();
    }

    if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
      scheme = { encode: emsaPkcs1v15encode };
      bt = 0x01;
    } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
      scheme = { encode: function() { return md; } };
      bt = 0x01;
    }

    // encode and then encrypt
    var d = scheme.encode(md, key.n.bitLength());
    return pki.rsa.encrypt(d, key, bt);
  };

  return key;
};

/**
 * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
 *
 * @param rsaKey the ASN.1 RSAPrivateKey.
 *
 * @return the ASN.1 PrivateKeyInfo.
 */
pki.wrapRsaPrivateKey = function(rsaKey) {
  // PrivateKeyInfo
  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
    // version (0)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      asn1.integerToDer(0).getBytes()),
    // privateKeyAlgorithm
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
      asn1.create(
        asn1.Class.UNIVERSAL, asn1.Type.OID, false,
        asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
      asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
    ]),
    // PrivateKey
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
      asn1.toDer(rsaKey).getBytes())
    ]);
};

/**
 * Converts a private key from an ASN.1 object.
 *
 * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
 *          RSAPrivateKey or an RSAPrivateKey.
 *
 * @return the private key.
 */
pki.privateKeyFromAsn1 = function(obj) {
  // get PrivateKeyInfo
  var capture = {};
  var errors = [];
  if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
    obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
  }

  // get RSAPrivateKey
  capture = {};
  errors = [];
  if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
    var error = new Error('Cannot read private key. ' +
      'ASN.1 object does not contain an RSAPrivateKey.');
    error.errors = errors;
    throw error;
  }

  // Note: Version is currently ignored.
  // capture.privateKeyVersion
  // FIXME: inefficient, get a BigInteger that uses byte strings
  var n, e, d, p, q, dP, dQ, qInv;
  n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
  e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
  d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
  p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
  q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
  dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
  dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
  qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();

  // set private key
  return pki.setRsaPrivateKey(
    new BigInteger(n, 16),
    new BigInteger(e, 16),
    new BigInteger(d, 16),
    new BigInteger(p, 16),
    new BigInteger(q, 16),
    new BigInteger(dP, 16),
    new BigInteger(dQ, 16),
    new BigInteger(qInv, 16));
};

/**
 * Converts a private key to an ASN.1 RSAPrivateKey.
 *
 * @param key the private key.
 *
 * @return the ASN.1 representation of an RSAPrivateKey.
 */
pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
  // RSAPrivateKey
  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
    // version (0 = only 2 primes, 1 multiple primes)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      asn1.integerToDer(0).getBytes()),
    // modulus (n)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.n)),
    // publicExponent (e)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.e)),
    // privateExponent (d)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.d)),
    // privateKeyPrime1 (p)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.p)),
    // privateKeyPrime2 (q)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.q)),
    // privateKeyExponent1 (dP)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.dP)),
    // privateKeyExponent2 (dQ)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.dQ)),
    // coefficient (qInv)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.qInv))
  ]);
};

/**
 * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
 *
 * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
 *
 * @return the public key.
 */
pki.publicKeyFromAsn1 = function(obj) {
  // get SubjectPublicKeyInfo
  var capture = {};
  var errors = [];
  if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
    // get oid
    var oid = asn1.derToOid(capture.publicKeyOid);
    if(oid !== pki.oids.rsaEncryption) {
      var error = new Error('Cannot read public key. Unknown OID.');
      error.oid = oid;
      throw error;
    }
    obj = capture.rsaPublicKey;
  }

  // get RSA params
  errors = [];
  if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
    var error = new Error('Cannot read public key. ' +
      'ASN.1 object does not contain an RSAPublicKey.');
    error.errors = errors;
    throw error;
  }

  // FIXME: inefficient, get a BigInteger that uses byte strings
  var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
  var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();

  // set public key
  return pki.setRsaPublicKey(
    new BigInteger(n, 16),
    new BigInteger(e, 16));
};

/**
 * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
 *
 * @param key the public key.
 *
 * @return the asn1 representation of a SubjectPublicKeyInfo.
 */
pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
  // SubjectPublicKeyInfo
  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
    // AlgorithmIdentifier
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
      // algorithm
      asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
        asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
      // parameters (null)
      asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
    ]),
    // subjectPublicKey
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
      pki.publicKeyToRSAPublicKey(key)
    ])
  ]);
};

/**
 * Converts a public key to an ASN.1 RSAPublicKey.
 *
 * @param key the public key.
 *
 * @return the asn1 representation of a RSAPublicKey.
 */
pki.publicKeyToRSAPublicKey = function(key) {
  // RSAPublicKey
  return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
    // modulus (n)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.n)),
    // publicExponent (e)
    asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
      _bnToBytes(key.e))
  ]);
};

/**
 * Encodes a message using PKCS#1 v1.5 padding.
 *
 * @param m the message to encode.
 * @param key the RSA key to use.
 * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
 *          (for encryption).
 *
 * @return the padded byte buffer.
 */
function _encodePkcs1_v1_5(m, key, bt) {
  var eb = forge.util.createBuffer();

  // get the length of the modulus in bytes
  var k = Math.ceil(key.n.bitLength() / 8);

  /* use PKCS#1 v1.5 padding */
  if(m.length > (k - 11)) {
    var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
    error.length = m.length;
    error.max = k - 11;
    throw error;
  }

  /* A block type BT, a padding string PS, and the data D shall be
    formatted into an octet string EB, the encryption block:

    EB = 00 || BT || PS || 00 || D

    The block type BT shall be a single octet indicating the structure of
    the encryption block. For this version of the document it shall have
    value 00, 01, or 02. For a private-key operation, the block type
    shall be 00 or 01. For a public-key operation, it shall be 02.

    The padding string PS shall consist of k-3-||D|| octets. For block
    type 00, the octets shall have value 00; for block type 01, they
    shall have value FF; and for block type 02, they shall be
    pseudorandomly generated and nonzero. This makes the length of the
    encryption block EB equal to k. */

  // build the encryption block
  eb.putByte(0x00);
  eb.putByte(bt);

  // create the padding
  var padNum = k - 3 - m.length;
  var padByte;
  // private key op
  if(bt === 0x00 || bt === 0x01) {
    padByte = (bt === 0x00) ? 0x00 : 0xFF;
    for(var i = 0; i < padNum; ++i) {
      eb.putByte(padByte);
    }
  } else {
    // public key op
    // pad with random non-zero values
    while(padNum > 0) {
      var numZeros = 0;
      var padBytes = forge.random.getBytes(padNum);
      for(var i = 0; i < padNum; ++i) {
        padByte = padBytes.charCodeAt(i);
        if(padByte === 0) {
          ++numZeros;
        } else {
          eb.putByte(padByte);
        }
      }
      padNum = numZeros;
    }
  }

  // zero followed by message
  eb.putByte(0x00);
  eb.putBytes(m);

  return eb;
}

/**
 * Decodes a message using PKCS#1 v1.5 padding.
 *
 * @param em the message to decode.
 * @param key the RSA key to use.
 * @param pub true if the key is a public key, false if it is private.
 * @param ml the message length, if specified.
 *
 * @return the decoded bytes.
 */
function _decodePkcs1_v1_5(em, key, pub, ml) {
  // get the length of the modulus in bytes
  var k = Math.ceil(key.n.bitLength() / 8);

  /* It is an error if any of the following conditions occurs:

    1. The encryption block EB cannot be parsed unambiguously.
    2. The padding string PS consists of fewer than eight octets
      or is inconsisent with the block type BT.
    3. The decryption process is a public-key operation and the block
      type BT is not 00 or 01, or the decryption process is a
      private-key operation and the block type is not 02.
   */

  // parse the encryption block
  var eb = forge.util.createBuffer(em);
  var first = eb.getByte();
  var bt = eb.getByte();
  if(first !== 0x00 ||
    (pub && bt !== 0x00 && bt !== 0x01) ||
    (!pub && bt != 0x02) ||
    (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
    throw new Error('Encryption block is invalid.');
  }

  var padNum = 0;
  if(bt === 0x00) {
    // check all padding bytes for 0x00
    padNum = k - 3 - ml;
    for(var i = 0; i < padNum; ++i) {
      if(eb.getByte() !== 0x00) {
        throw new Error('Encryption block is invalid.');
      }
    }
  } else if(bt === 0x01) {
    // find the first byte that isn't 0xFF, should be after all padding
    padNum = 0;
    while(eb.length() > 1) {
      if(eb.getByte() !== 0xFF) {
        --eb.read;
        break;
      }
      ++padNum;
    }
  } else if(bt === 0x02) {
    // look for 0x00 byte
    padNum = 0;
    while(eb.length() > 1) {
      if(eb.getByte() === 0x00) {
        --eb.read;
        break;
      }
      ++padNum;
    }
  }

  // zero must be 0x00 and padNum must be (k - 3 - message length)
  var zero = eb.getByte();
  if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
    throw new Error('Encryption block is invalid.');
  }

  return eb.getBytes();
}

/**
 * Runs the key-generation algorithm asynchronously, either in the background
 * via Web Workers, or using the main thread and setImmediate.
 *
 * @param state the key-pair generation state.
 * @param [options] options for key-pair generation:
 *          workerScript the worker script URL.
 *          workers the number of web workers (if supported) to use,
 *            (default: 2, -1 to use estimated cores minus one).
 *          workLoad the size of the work load, ie: number of possible prime
 *            numbers for each web worker to check per work assignment,
 *            (default: 100).
 * @param callback(err, keypair) called once the operation completes.
 */
function _generateKeyPair(state, options, callback) {
  if(typeof options === 'function') {
    callback = options;
    options = {};
  }
  options = options || {};

  var opts = {
    algorithm: {
      name: options.algorithm || 'PRIMEINC',
      options: {
        workers: options.workers || 2,
        workLoad: options.workLoad || 100,
        workerScript: options.workerScript
      }
    }
  };
  if('prng' in options) {
    opts.prng = options.prng;
  }

  generate();

  function generate() {
    // find p and then q (done in series to simplify)
    getPrime(state.pBits, function(err, num) {
      if(err) {
        return callback(err);
      }
      state.p = num;
      if(state.q !== null) {
        return finish(err, state.q);
      }
      getPrime(state.qBits, finish);
    });
  }

  function getPrime(bits, callback) {
    forge.prime.generateProbablePrime(bits, opts, callback);
  }

  function finish(err, num) {
    if(err) {
      return callback(err);
    }

    // set q
    state.q = num;

    // ensure p is larger than q (swap them if not)
    if(state.p.compareTo(state.q) < 0) {
      var tmp = state.p;
      state.p = state.q;
      state.q = tmp;
    }

    // ensure p is coprime with e
    if(state.p.subtract(BigInteger.ONE).gcd(state.e)
      .compareTo(BigInteger.ONE) !== 0) {
      state.p = null;
      generate();
      return;
    }

    // ensure q is coprime with e
    if(state.q.subtract(BigInteger.ONE).gcd(state.e)
      .compareTo(BigInteger.ONE) !== 0) {
      state.q = null;
      getPrime(state.qBits, finish);
      return;
    }

    // compute phi: (p - 1)(q - 1) (Euler's totient function)
    state.p1 = state.p.subtract(BigInteger.ONE);
    state.q1 = state.q.subtract(BigInteger.ONE);
    state.phi = state.p1.multiply(state.q1);

    // ensure e and phi are coprime
    if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
      // phi and e aren't coprime, so generate a new p and q
      state.p = state.q = null;
      generate();
      return;
    }

    // create n, ensure n is has the right number of bits
    state.n = state.p.multiply(state.q);
    if(state.n.bitLength() !== state.bits) {
      // failed, get new q
      state.q = null;
      getPrime(state.qBits, finish);
      return;
    }

    // set keys
    var d = state.e.modInverse(state.phi);
    state.keys = {
      privateKey: pki.rsa.setPrivateKey(
        state.n, state.e, d, state.p, state.q,
        d.mod(state.p1), d.mod(state.q1),
        state.q.modInverse(state.p)),
      publicKey: pki.rsa.setPublicKey(state.n, state.e)
    };

    callback(null, state.keys);
  }
}

/**
 * Converts a positive BigInteger into 2's-complement big-endian bytes.
 *
 * @param b the big integer to convert.
 *
 * @return the bytes.
 */
function _bnToBytes(b) {
  // prepend 0x00 if first byte >= 0x80
  var hex = b.toString(16);
  if(hex[0] >= '8') {
    hex = '00' + hex;
  }
  return forge.util.hexToBytes(hex);
}

/**
 * Returns the required number of Miller-Rabin tests to generate a
 * prime with an error probability of (1/2)^80.
 *
 * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
 *
 * @param bits the bit size.
 *
 * @return the required number of iterations.
 */
function _getMillerRabinTests(bits) {
  if(bits <= 100) return 27;
  if(bits <= 150) return 18;
  if(bits <= 200) return 15;
  if(bits <= 250) return 12;
  if(bits <= 300) return 9;
  if(bits <= 350) return 8;
  if(bits <= 400) return 7;
  if(bits <= 500) return 6;
  if(bits <= 600) return 5;
  if(bits <= 800) return 4;
  if(bits <= 1250) return 3;
  return 2;
}

} // end module implementation

/* ########## Begin module wrapper ########## */
var name = 'rsa';
if(typeof define !== 'function') {
  // NodeJS -> AMD
  if(typeof module === 'object' && module.exports) {
    var nodeJS = true;
    define = function(ids, factory) {
      factory(require, module);
    };
  } else {
    // <script>
    if(typeof forge === 'undefined') {
      forge = {};
    }
    return initModule(forge);
  }
}
// AMD
var deps;
var defineFunc = function(require, module) {
  module.exports = function(forge) {
    var mods = deps.map(function(dep) {
      return require(dep);
    }).concat(initModule);
    // handle circular dependencies
    forge = forge || {};
    forge.defined = forge.defined || {};
    if(forge.defined[name]) {
      return forge[name];
    }
    forge.defined[name] = true;
    for(var i = 0; i < mods.length; ++i) {
      mods[i](forge);
    }
    return forge[name];
  };
};
var tmpDefine = define;
define = function(ids, factory) {
  deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
  if(nodeJS) {
    delete define;
    return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
  }
  define = tmpDefine;
  return define.apply(null, Array.prototype.slice.call(arguments, 0));
};
define([
  'require',
  'module',
  './asn1',
  './jsbn',
  './oids',
  './pkcs1',
  './prime',
  './random',
  './util'
], function() {
  defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
});
})();