diff options
Diffstat (limited to 'school/node_modules/node-forge/js/rsa.js')
-rw-r--r-- | school/node_modules/node-forge/js/rsa.js | 1712 |
1 files changed, 1712 insertions, 0 deletions
diff --git a/school/node_modules/node-forge/js/rsa.js b/school/node_modules/node-forge/js/rsa.js new file mode 100644 index 0000000..90f8c0a --- /dev/null +++ b/school/node_modules/node-forge/js/rsa.js @@ -0,0 +1,1712 @@ +/** + * Javascript implementation of basic RSA algorithms. + * + * @author Dave Longley + * + * Copyright (c) 2010-2014 Digital Bazaar, Inc. + * + * The only algorithm currently supported for PKI is RSA. + * + * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo + * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier + * and a subjectPublicKey of type bit string. + * + * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters + * for the algorithm, if any. In the case of RSA, there aren't any. + * + * SubjectPublicKeyInfo ::= SEQUENCE { + * algorithm AlgorithmIdentifier, + * subjectPublicKey BIT STRING + * } + * + * AlgorithmIdentifer ::= SEQUENCE { + * algorithm OBJECT IDENTIFIER, + * parameters ANY DEFINED BY algorithm OPTIONAL + * } + * + * For an RSA public key, the subjectPublicKey is: + * + * RSAPublicKey ::= SEQUENCE { + * modulus INTEGER, -- n + * publicExponent INTEGER -- e + * } + * + * PrivateKeyInfo ::= SEQUENCE { + * version Version, + * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, + * privateKey PrivateKey, + * attributes [0] IMPLICIT Attributes OPTIONAL + * } + * + * Version ::= INTEGER + * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier + * PrivateKey ::= OCTET STRING + * Attributes ::= SET OF Attribute + * + * An RSA private key as the following structure: + * + * RSAPrivateKey ::= SEQUENCE { + * version Version, + * modulus INTEGER, -- n + * publicExponent INTEGER, -- e + * privateExponent INTEGER, -- d + * prime1 INTEGER, -- p + * prime2 INTEGER, -- q + * exponent1 INTEGER, -- d mod (p-1) + * exponent2 INTEGER, -- d mod (q-1) + * coefficient INTEGER -- (inverse of q) mod p + * } + * + * Version ::= INTEGER + * + * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1 + */ +(function() { +function initModule(forge) { +/* ########## Begin module implementation ########## */ + +if(typeof BigInteger === 'undefined') { + var BigInteger = forge.jsbn.BigInteger; +} + +// shortcut for asn.1 API +var asn1 = forge.asn1; + +/* + * RSA encryption and decryption, see RFC 2313. + */ +forge.pki = forge.pki || {}; +forge.pki.rsa = forge.rsa = forge.rsa || {}; +var pki = forge.pki; + +// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29 +var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; + +// validator for a PrivateKeyInfo structure +var privateKeyValidator = { + // PrivateKeyInfo + name: 'PrivateKeyInfo', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + value: [{ + // Version (INTEGER) + name: 'PrivateKeyInfo.version', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyVersion' + }, { + // privateKeyAlgorithm + name: 'PrivateKeyInfo.privateKeyAlgorithm', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + value: [{ + name: 'AlgorithmIdentifier.algorithm', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.OID, + constructed: false, + capture: 'privateKeyOid' + }] + }, { + // PrivateKey + name: 'PrivateKeyInfo', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.OCTETSTRING, + constructed: false, + capture: 'privateKey' + }] +}; + +// validator for an RSA private key +var rsaPrivateKeyValidator = { + // RSAPrivateKey + name: 'RSAPrivateKey', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + value: [{ + // Version (INTEGER) + name: 'RSAPrivateKey.version', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyVersion' + }, { + // modulus (n) + name: 'RSAPrivateKey.modulus', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyModulus' + }, { + // publicExponent (e) + name: 'RSAPrivateKey.publicExponent', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyPublicExponent' + }, { + // privateExponent (d) + name: 'RSAPrivateKey.privateExponent', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyPrivateExponent' + }, { + // prime1 (p) + name: 'RSAPrivateKey.prime1', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyPrime1' + }, { + // prime2 (q) + name: 'RSAPrivateKey.prime2', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyPrime2' + }, { + // exponent1 (d mod (p-1)) + name: 'RSAPrivateKey.exponent1', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyExponent1' + }, { + // exponent2 (d mod (q-1)) + name: 'RSAPrivateKey.exponent2', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyExponent2' + }, { + // coefficient ((inverse of q) mod p) + name: 'RSAPrivateKey.coefficient', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'privateKeyCoefficient' + }] +}; + +// validator for an RSA public key +var rsaPublicKeyValidator = { + // RSAPublicKey + name: 'RSAPublicKey', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + value: [{ + // modulus (n) + name: 'RSAPublicKey.modulus', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'publicKeyModulus' + }, { + // publicExponent (e) + name: 'RSAPublicKey.exponent', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.INTEGER, + constructed: false, + capture: 'publicKeyExponent' + }] +}; + +// validator for an SubjectPublicKeyInfo structure +// Note: Currently only works with an RSA public key +var publicKeyValidator = forge.pki.rsa.publicKeyValidator = { + name: 'SubjectPublicKeyInfo', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + captureAsn1: 'subjectPublicKeyInfo', + value: [{ + name: 'SubjectPublicKeyInfo.AlgorithmIdentifier', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + value: [{ + name: 'AlgorithmIdentifier.algorithm', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.OID, + constructed: false, + capture: 'publicKeyOid' + }] + }, { + // subjectPublicKey + name: 'SubjectPublicKeyInfo.subjectPublicKey', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.BITSTRING, + constructed: false, + value: [{ + // RSAPublicKey + name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey', + tagClass: asn1.Class.UNIVERSAL, + type: asn1.Type.SEQUENCE, + constructed: true, + optional: true, + captureAsn1: 'rsaPublicKey' + }] + }] +}; + +/** + * Wrap digest in DigestInfo object. + * + * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447. + * + * DigestInfo ::= SEQUENCE { + * digestAlgorithm DigestAlgorithmIdentifier, + * digest Digest + * } + * + * DigestAlgorithmIdentifier ::= AlgorithmIdentifier + * Digest ::= OCTET STRING + * + * @param md the message digest object with the hash to sign. + * + * @return the encoded message (ready for RSA encrytion) + */ +var emsaPkcs1v15encode = function(md) { + // get the oid for the algorithm + var oid; + if(md.algorithm in pki.oids) { + oid = pki.oids[md.algorithm]; + } else { + var error = new Error('Unknown message digest algorithm.'); + error.algorithm = md.algorithm; + throw error; + } + var oidBytes = asn1.oidToDer(oid).getBytes(); + + // create the digest info + var digestInfo = asn1.create( + asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); + var digestAlgorithm = asn1.create( + asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); + digestAlgorithm.value.push(asn1.create( + asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes)); + digestAlgorithm.value.push(asn1.create( + asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')); + var digest = asn1.create( + asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, + false, md.digest().getBytes()); + digestInfo.value.push(digestAlgorithm); + digestInfo.value.push(digest); + + // encode digest info + return asn1.toDer(digestInfo).getBytes(); +}; + +/** + * Performs x^c mod n (RSA encryption or decryption operation). + * + * @param x the number to raise and mod. + * @param key the key to use. + * @param pub true if the key is public, false if private. + * + * @return the result of x^c mod n. + */ +var _modPow = function(x, key, pub) { + if(pub) { + return x.modPow(key.e, key.n); + } + + if(!key.p || !key.q) { + // allow calculation without CRT params (slow) + return x.modPow(key.d, key.n); + } + + // pre-compute dP, dQ, and qInv if necessary + if(!key.dP) { + key.dP = key.d.mod(key.p.subtract(BigInteger.ONE)); + } + if(!key.dQ) { + key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE)); + } + if(!key.qInv) { + key.qInv = key.q.modInverse(key.p); + } + + /* Chinese remainder theorem (CRT) states: + + Suppose n1, n2, ..., nk are positive integers which are pairwise + coprime (n1 and n2 have no common factors other than 1). For any + integers x1, x2, ..., xk there exists an integer x solving the + system of simultaneous congruences (where ~= means modularly + congruent so a ~= b mod n means a mod n = b mod n): + + x ~= x1 mod n1 + x ~= x2 mod n2 + ... + x ~= xk mod nk + + This system of congruences has a single simultaneous solution x + between 0 and n - 1. Furthermore, each xk solution and x itself + is congruent modulo the product n = n1*n2*...*nk. + So x1 mod n = x2 mod n = xk mod n = x mod n. + + The single simultaneous solution x can be solved with the following + equation: + + x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni. + + Where x is less than n, xi = x mod ni. + + For RSA we are only concerned with k = 2. The modulus n = pq, where + p and q are coprime. The RSA decryption algorithm is: + + y = x^d mod n + + Given the above: + + x1 = x^d mod p + r1 = n/p = q + s1 = q^-1 mod p + x2 = x^d mod q + r2 = n/q = p + s2 = p^-1 mod q + + So y = (x1r1s1 + x2r2s2) mod n + = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n + + According to Fermat's Little Theorem, if the modulus P is prime, + for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P. + Since A is not divisible by P it follows that if: + N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore: + + A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort + to calculate). In order to calculate x^d mod p more quickly the + exponent d mod (p - 1) is stored in the RSA private key (the same + is done for x^d mod q). These values are referred to as dP and dQ + respectively. Therefore we now have: + + y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n + + Since we'll be reducing x^dP by modulo p (same for q) we can also + reduce x by p (and q respectively) before hand. Therefore, let + + xp = ((x mod p)^dP mod p), and + xq = ((x mod q)^dQ mod q), yielding: + + y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n + + This can be further reduced to a simple algorithm that only + requires 1 inverse (the q inverse is used) to be used and stored. + The algorithm is called Garner's algorithm. If qInv is the + inverse of q, we simply calculate: + + y = (qInv*(xp - xq) mod p) * q + xq + + However, there are two further complications. First, we need to + ensure that xp > xq to prevent signed BigIntegers from being used + so we add p until this is true (since we will be mod'ing with + p anyway). Then, there is a known timing attack on algorithms + using the CRT. To mitigate this risk, "cryptographic blinding" + should be used. This requires simply generating a random number r between + 0 and n-1 and its inverse and multiplying x by r^e before calculating y + and then multiplying y by r^-1 afterwards. + */ + + // cryptographic blinding + var r; + do { + r = new BigInteger( + forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)), + 16).mod(key.n); + } while(r.equals(BigInteger.ZERO)); + x = x.multiply(r.modPow(key.e, key.n)).mod(key.n); + + // calculate xp and xq + var xp = x.mod(key.p).modPow(key.dP, key.p); + var xq = x.mod(key.q).modPow(key.dQ, key.q); + + // xp must be larger than xq to avoid signed bit usage + while(xp.compareTo(xq) < 0) { + xp = xp.add(key.p); + } + + // do last step + var y = xp.subtract(xq) + .multiply(key.qInv).mod(key.p) + .multiply(key.q).add(xq); + + // remove effect of random for cryptographic blinding + y = y.multiply(r.modInverse(key.n)).mod(key.n); + + return y; +}; + +/** + * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or + * 'encrypt' on a public key object instead. + * + * Performs RSA encryption. + * + * The parameter bt controls whether to put padding bytes before the + * message passed in. Set bt to either true or false to disable padding + * completely (in order to handle e.g. EMSA-PSS encoding seperately before), + * signaling whether the encryption operation is a public key operation + * (i.e. encrypting data) or not, i.e. private key operation (data signing). + * + * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01 + * (for signing) or 0x02 (for encryption). The key operation mode (private + * or public) is derived from this flag in that case). + * + * @param m the message to encrypt as a byte string. + * @param key the RSA key to use. + * @param bt for PKCS#1 v1.5 padding, the block type to use + * (0x01 for private key, 0x02 for public), + * to disable padding: true = public key, false = private key. + * + * @return the encrypted bytes as a string. + */ +pki.rsa.encrypt = function(m, key, bt) { + var pub = bt; + var eb; + + // get the length of the modulus in bytes + var k = Math.ceil(key.n.bitLength() / 8); + + if(bt !== false && bt !== true) { + // legacy, default to PKCS#1 v1.5 padding + pub = (bt === 0x02); + eb = _encodePkcs1_v1_5(m, key, bt); + } else { + eb = forge.util.createBuffer(); + eb.putBytes(m); + } + + // load encryption block as big integer 'x' + // FIXME: hex conversion inefficient, get BigInteger w/byte strings + var x = new BigInteger(eb.toHex(), 16); + + // do RSA encryption + var y = _modPow(x, key, pub); + + // convert y into the encrypted data byte string, if y is shorter in + // bytes than k, then prepend zero bytes to fill up ed + // FIXME: hex conversion inefficient, get BigInteger w/byte strings + var yhex = y.toString(16); + var ed = forge.util.createBuffer(); + var zeros = k - Math.ceil(yhex.length / 2); + while(zeros > 0) { + ed.putByte(0x00); + --zeros; + } + ed.putBytes(forge.util.hexToBytes(yhex)); + return ed.getBytes(); +}; + +/** + * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or + * 'verify' on a public key object instead. + * + * Performs RSA decryption. + * + * The parameter ml controls whether to apply PKCS#1 v1.5 padding + * or not. Set ml = false to disable padding removal completely + * (in order to handle e.g. EMSA-PSS later on) and simply pass back + * the RSA encryption block. + * + * @param ed the encrypted data to decrypt in as a byte string. + * @param key the RSA key to use. + * @param pub true for a public key operation, false for private. + * @param ml the message length, if known, false to disable padding. + * + * @return the decrypted message as a byte string. + */ +pki.rsa.decrypt = function(ed, key, pub, ml) { + // get the length of the modulus in bytes + var k = Math.ceil(key.n.bitLength() / 8); + + // error if the length of the encrypted data ED is not k + if(ed.length !== k) { + var error = new Error('Encrypted message length is invalid.'); + error.length = ed.length; + error.expected = k; + throw error; + } + + // convert encrypted data into a big integer + // FIXME: hex conversion inefficient, get BigInteger w/byte strings + var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16); + + // y must be less than the modulus or it wasn't the result of + // a previous mod operation (encryption) using that modulus + if(y.compareTo(key.n) >= 0) { + throw new Error('Encrypted message is invalid.'); + } + + // do RSA decryption + var x = _modPow(y, key, pub); + + // create the encryption block, if x is shorter in bytes than k, then + // prepend zero bytes to fill up eb + // FIXME: hex conversion inefficient, get BigInteger w/byte strings + var xhex = x.toString(16); + var eb = forge.util.createBuffer(); + var zeros = k - Math.ceil(xhex.length / 2); + while(zeros > 0) { + eb.putByte(0x00); + --zeros; + } + eb.putBytes(forge.util.hexToBytes(xhex)); + + if(ml !== false) { + // legacy, default to PKCS#1 v1.5 padding + return _decodePkcs1_v1_5(eb.getBytes(), key, pub); + } + + // return message + return eb.getBytes(); +}; + +/** + * Creates an RSA key-pair generation state object. It is used to allow + * key-generation to be performed in steps. It also allows for a UI to + * display progress updates. + * + * @param bits the size for the private key in bits, defaults to 2048. + * @param e the public exponent to use, defaults to 65537 (0x10001). + * @param [options] the options to use. + * prng a custom crypto-secure pseudo-random number generator to use, + * that must define "getBytesSync". + * algorithm the algorithm to use (default: 'PRIMEINC'). + * + * @return the state object to use to generate the key-pair. + */ +pki.rsa.createKeyPairGenerationState = function(bits, e, options) { + // TODO: migrate step-based prime generation code to forge.prime + + // set default bits + if(typeof(bits) === 'string') { + bits = parseInt(bits, 10); + } + bits = bits || 2048; + + // create prng with api that matches BigInteger secure random + options = options || {}; + var prng = options.prng || forge.random; + var rng = { + // x is an array to fill with bytes + nextBytes: function(x) { + var b = prng.getBytesSync(x.length); + for(var i = 0; i < x.length; ++i) { + x[i] = b.charCodeAt(i); + } + } + }; + + var algorithm = options.algorithm || 'PRIMEINC'; + + // create PRIMEINC algorithm state + var rval; + if(algorithm === 'PRIMEINC') { + rval = { + algorithm: algorithm, + state: 0, + bits: bits, + rng: rng, + eInt: e || 65537, + e: new BigInteger(null), + p: null, + q: null, + qBits: bits >> 1, + pBits: bits - (bits >> 1), + pqState: 0, + num: null, + keys: null + }; + rval.e.fromInt(rval.eInt); + } else { + throw new Error('Invalid key generation algorithm: ' + algorithm); + } + + return rval; +}; + +/** + * Attempts to runs the key-generation algorithm for at most n seconds + * (approximately) using the given state. When key-generation has completed, + * the keys will be stored in state.keys. + * + * To use this function to update a UI while generating a key or to prevent + * causing browser lockups/warnings, set "n" to a value other than 0. A + * simple pattern for generating a key and showing a progress indicator is: + * + * var state = pki.rsa.createKeyPairGenerationState(2048); + * var step = function() { + * // step key-generation, run algorithm for 100 ms, repeat + * if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) { + * setTimeout(step, 1); + * } else { + * // key-generation complete + * // TODO: turn off progress indicator here + * // TODO: use the generated key-pair in "state.keys" + * } + * }; + * // TODO: turn on progress indicator here + * setTimeout(step, 0); + * + * @param state the state to use. + * @param n the maximum number of milliseconds to run the algorithm for, 0 + * to run the algorithm to completion. + * + * @return true if the key-generation completed, false if not. + */ +pki.rsa.stepKeyPairGenerationState = function(state, n) { + // set default algorithm if not set + if(!('algorithm' in state)) { + state.algorithm = 'PRIMEINC'; + } + + // TODO: migrate step-based prime generation code to forge.prime + // TODO: abstract as PRIMEINC algorithm + + // do key generation (based on Tom Wu's rsa.js, see jsbn.js license) + // with some minor optimizations and designed to run in steps + + // local state vars + var THIRTY = new BigInteger(null); + THIRTY.fromInt(30); + var deltaIdx = 0; + var op_or = function(x,y) { return x|y; }; + + // keep stepping until time limit is reached or done + var t1 = +new Date(); + var t2; + var total = 0; + while(state.keys === null && (n <= 0 || total < n)) { + // generate p or q + if(state.state === 0) { + /* Note: All primes are of the form: + + 30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i + + When we generate a random number, we always align it at 30k + 1. Each + time the number is determined not to be prime we add to get to the + next 'i', eg: if the number was at 30k + 1 we add 6. */ + var bits = (state.p === null) ? state.pBits : state.qBits; + var bits1 = bits - 1; + + // get a random number + if(state.pqState === 0) { + state.num = new BigInteger(bits, state.rng); + // force MSB set + if(!state.num.testBit(bits1)) { + state.num.bitwiseTo( + BigInteger.ONE.shiftLeft(bits1), op_or, state.num); + } + // align number on 30k+1 boundary + state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0); + deltaIdx = 0; + + ++state.pqState; + } else if(state.pqState === 1) { + // try to make the number a prime + if(state.num.bitLength() > bits) { + // overflow, try again + state.pqState = 0; + // do primality test + } else if(state.num.isProbablePrime( + _getMillerRabinTests(state.num.bitLength()))) { + ++state.pqState; + } else { + // get next potential prime + state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); + } + } else if(state.pqState === 2) { + // ensure number is coprime with e + state.pqState = + (state.num.subtract(BigInteger.ONE).gcd(state.e) + .compareTo(BigInteger.ONE) === 0) ? 3 : 0; + } else if(state.pqState === 3) { + // store p or q + state.pqState = 0; + if(state.p === null) { + state.p = state.num; + } else { + state.q = state.num; + } + + // advance state if both p and q are ready + if(state.p !== null && state.q !== null) { + ++state.state; + } + state.num = null; + } + } else if(state.state === 1) { + // ensure p is larger than q (swap them if not) + if(state.p.compareTo(state.q) < 0) { + state.num = state.p; + state.p = state.q; + state.q = state.num; + } + ++state.state; + } else if(state.state === 2) { + // compute phi: (p - 1)(q - 1) (Euler's totient function) + state.p1 = state.p.subtract(BigInteger.ONE); + state.q1 = state.q.subtract(BigInteger.ONE); + state.phi = state.p1.multiply(state.q1); + ++state.state; + } else if(state.state === 3) { + // ensure e and phi are coprime + if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) { + // phi and e are coprime, advance + ++state.state; + } else { + // phi and e aren't coprime, so generate a new p and q + state.p = null; + state.q = null; + state.state = 0; + } + } else if(state.state === 4) { + // create n, ensure n is has the right number of bits + state.n = state.p.multiply(state.q); + + // ensure n is right number of bits + if(state.n.bitLength() === state.bits) { + // success, advance + ++state.state; + } else { + // failed, get new q + state.q = null; + state.state = 0; + } + } else if(state.state === 5) { + // set keys + var d = state.e.modInverse(state.phi); + state.keys = { + privateKey: pki.rsa.setPrivateKey( + state.n, state.e, d, state.p, state.q, + d.mod(state.p1), d.mod(state.q1), + state.q.modInverse(state.p)), + publicKey: pki.rsa.setPublicKey(state.n, state.e) + }; + } + + // update timing + t2 = +new Date(); + total += t2 - t1; + t1 = t2; + } + + return state.keys !== null; +}; + +/** + * Generates an RSA public-private key pair in a single call. + * + * To generate a key-pair in steps (to allow for progress updates and to + * prevent blocking or warnings in slow browsers) then use the key-pair + * generation state functions. + * + * To generate a key-pair asynchronously (either through web-workers, if + * available, or by breaking up the work on the main thread), pass a + * callback function. + * + * @param [bits] the size for the private key in bits, defaults to 2048. + * @param [e] the public exponent to use, defaults to 65537. + * @param [options] options for key-pair generation, if given then 'bits' + * and 'e' must *not* be given: + * bits the size for the private key in bits, (default: 2048). + * e the public exponent to use, (default: 65537 (0x10001)). + * workerScript the worker script URL. + * workers the number of web workers (if supported) to use, + * (default: 2). + * workLoad the size of the work load, ie: number of possible prime + * numbers for each web worker to check per work assignment, + * (default: 100). + * e the public exponent to use, defaults to 65537. + * prng a custom crypto-secure pseudo-random number generator to use, + * that must define "getBytesSync". + * algorithm the algorithm to use (default: 'PRIMEINC'). + * @param [callback(err, keypair)] called once the operation completes. + * + * @return an object with privateKey and publicKey properties. + */ +pki.rsa.generateKeyPair = function(bits, e, options, callback) { + // (bits), (options), (callback) + if(arguments.length === 1) { + if(typeof bits === 'object') { + options = bits; + bits = undefined; + } else if(typeof bits === 'function') { + callback = bits; + bits = undefined; + } + } else if(arguments.length === 2) { + // (bits, e), (bits, options), (bits, callback), (options, callback) + if(typeof bits === 'number') { + if(typeof e === 'function') { + callback = e; + e = undefined; + } else if(typeof e !== 'number') { + options = e; + e = undefined; + } + } else { + options = bits; + callback = e; + bits = undefined; + e = undefined; + } + } else if(arguments.length === 3) { + // (bits, e, options), (bits, e, callback), (bits, options, callback) + if(typeof e === 'number') { + if(typeof options === 'function') { + callback = options; + options = undefined; + } + } else { + callback = options; + options = e; + e = undefined; + } + } + options = options || {}; + if(bits === undefined) { + bits = options.bits || 2048; + } + if(e === undefined) { + e = options.e || 0x10001; + } + var state = pki.rsa.createKeyPairGenerationState(bits, e, options); + if(!callback) { + pki.rsa.stepKeyPairGenerationState(state, 0); + return state.keys; + } + _generateKeyPair(state, options, callback); +}; + +/** + * Sets an RSA public key from BigIntegers modulus and exponent. + * + * @param n the modulus. + * @param e the exponent. + * + * @return the public key. + */ +pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) { + var key = { + n: n, + e: e + }; + + /** + * Encrypts the given data with this public key. Newer applications + * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for + * legacy applications. + * + * @param data the byte string to encrypt. + * @param scheme the encryption scheme to use: + * 'RSAES-PKCS1-V1_5' (default), + * 'RSA-OAEP', + * 'RAW', 'NONE', or null to perform raw RSA encryption, + * an object with an 'encode' property set to a function + * with the signature 'function(data, key)' that returns + * a binary-encoded string representing the encoded data. + * @param schemeOptions any scheme-specific options. + * + * @return the encrypted byte string. + */ + key.encrypt = function(data, scheme, schemeOptions) { + if(typeof scheme === 'string') { + scheme = scheme.toUpperCase(); + } else if(scheme === undefined) { + scheme = 'RSAES-PKCS1-V1_5'; + } + + if(scheme === 'RSAES-PKCS1-V1_5') { + scheme = { + encode: function(m, key, pub) { + return _encodePkcs1_v1_5(m, key, 0x02).getBytes(); + } + }; + } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { + scheme = { + encode: function(m, key) { + return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions); + } + }; + } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { + scheme = { encode: function(e) { return e; } }; + } else if(typeof scheme === 'string') { + throw new Error('Unsupported encryption scheme: "' + scheme + '".'); + } + + // do scheme-based encoding then rsa encryption + var e = scheme.encode(data, key, true); + return pki.rsa.encrypt(e, key, true); + }; + + /** + * Verifies the given signature against the given digest. + * + * PKCS#1 supports multiple (currently two) signature schemes: + * RSASSA-PKCS1-V1_5 and RSASSA-PSS. + * + * By default this implementation uses the "old scheme", i.e. + * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the + * signature is an OCTET STRING that holds a DigestInfo. + * + * DigestInfo ::= SEQUENCE { + * digestAlgorithm DigestAlgorithmIdentifier, + * digest Digest + * } + * DigestAlgorithmIdentifier ::= AlgorithmIdentifier + * Digest ::= OCTET STRING + * + * To perform PSS signature verification, provide an instance + * of Forge PSS object as the scheme parameter. + * + * @param digest the message digest hash to compare against the signature, + * as a binary-encoded string. + * @param signature the signature to verify, as a binary-encoded string. + * @param scheme signature verification scheme to use: + * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, + * a Forge PSS object for RSASSA-PSS, + * 'NONE' or null for none, DigestInfo will not be expected, but + * PKCS#1 v1.5 padding will still be used. + * + * @return true if the signature was verified, false if not. + */ + key.verify = function(digest, signature, scheme) { + if(typeof scheme === 'string') { + scheme = scheme.toUpperCase(); + } else if(scheme === undefined) { + scheme = 'RSASSA-PKCS1-V1_5'; + } + + if(scheme === 'RSASSA-PKCS1-V1_5') { + scheme = { + verify: function(digest, d) { + // remove padding + d = _decodePkcs1_v1_5(d, key, true); + // d is ASN.1 BER-encoded DigestInfo + var obj = asn1.fromDer(d); + // compare the given digest to the decrypted one + return digest === obj.value[1].value; + } + }; + } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { + scheme = { + verify: function(digest, d) { + // remove padding + d = _decodePkcs1_v1_5(d, key, true); + return digest === d; + } + }; + } + + // do rsa decryption w/o any decoding, then verify -- which does decoding + var d = pki.rsa.decrypt(signature, key, true, false); + return scheme.verify(digest, d, key.n.bitLength()); + }; + + return key; +}; + +/** + * Sets an RSA private key from BigIntegers modulus, exponent, primes, + * prime exponents, and modular multiplicative inverse. + * + * @param n the modulus. + * @param e the public exponent. + * @param d the private exponent ((inverse of e) mod n). + * @param p the first prime. + * @param q the second prime. + * @param dP exponent1 (d mod (p-1)). + * @param dQ exponent2 (d mod (q-1)). + * @param qInv ((inverse of q) mod p) + * + * @return the private key. + */ +pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function( + n, e, d, p, q, dP, dQ, qInv) { + var key = { + n: n, + e: e, + d: d, + p: p, + q: q, + dP: dP, + dQ: dQ, + qInv: qInv + }; + + /** + * Decrypts the given data with this private key. The decryption scheme + * must match the one used to encrypt the data. + * + * @param data the byte string to decrypt. + * @param scheme the decryption scheme to use: + * 'RSAES-PKCS1-V1_5' (default), + * 'RSA-OAEP', + * 'RAW', 'NONE', or null to perform raw RSA decryption. + * @param schemeOptions any scheme-specific options. + * + * @return the decrypted byte string. + */ + key.decrypt = function(data, scheme, schemeOptions) { + if(typeof scheme === 'string') { + scheme = scheme.toUpperCase(); + } else if(scheme === undefined) { + scheme = 'RSAES-PKCS1-V1_5'; + } + + // do rsa decryption w/o any decoding + var d = pki.rsa.decrypt(data, key, false, false); + + if(scheme === 'RSAES-PKCS1-V1_5') { + scheme = { decode: _decodePkcs1_v1_5 }; + } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { + scheme = { + decode: function(d, key) { + return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions); + } + }; + } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { + scheme = { decode: function(d) { return d; } }; + } else { + throw new Error('Unsupported encryption scheme: "' + scheme + '".'); + } + + // decode according to scheme + return scheme.decode(d, key, false); + }; + + /** + * Signs the given digest, producing a signature. + * + * PKCS#1 supports multiple (currently two) signature schemes: + * RSASSA-PKCS1-V1_5 and RSASSA-PSS. + * + * By default this implementation uses the "old scheme", i.e. + * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide + * an instance of Forge PSS object as the scheme parameter. + * + * @param md the message digest object with the hash to sign. + * @param scheme the signature scheme to use: + * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, + * a Forge PSS object for RSASSA-PSS, + * 'NONE' or null for none, DigestInfo will not be used but + * PKCS#1 v1.5 padding will still be used. + * + * @return the signature as a byte string. + */ + key.sign = function(md, scheme) { + /* Note: The internal implementation of RSA operations is being + transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy + code like the use of an encoding block identifier 'bt' will eventually + be removed. */ + + // private key operation + var bt = false; + + if(typeof scheme === 'string') { + scheme = scheme.toUpperCase(); + } + + if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') { + scheme = { encode: emsaPkcs1v15encode }; + bt = 0x01; + } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { + scheme = { encode: function() { return md; } }; + bt = 0x01; + } + + // encode and then encrypt + var d = scheme.encode(md, key.n.bitLength()); + return pki.rsa.encrypt(d, key, bt); + }; + + return key; +}; + +/** + * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object. + * + * @param rsaKey the ASN.1 RSAPrivateKey. + * + * @return the ASN.1 PrivateKeyInfo. + */ +pki.wrapRsaPrivateKey = function(rsaKey) { + // PrivateKeyInfo + return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ + // version (0) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + asn1.integerToDer(0).getBytes()), + // privateKeyAlgorithm + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ + asn1.create( + asn1.Class.UNIVERSAL, asn1.Type.OID, false, + asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') + ]), + // PrivateKey + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, + asn1.toDer(rsaKey).getBytes()) + ]); +}; + +/** + * Converts a private key from an ASN.1 object. + * + * @param obj the ASN.1 representation of a PrivateKeyInfo containing an + * RSAPrivateKey or an RSAPrivateKey. + * + * @return the private key. + */ +pki.privateKeyFromAsn1 = function(obj) { + // get PrivateKeyInfo + var capture = {}; + var errors = []; + if(asn1.validate(obj, privateKeyValidator, capture, errors)) { + obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey)); + } + + // get RSAPrivateKey + capture = {}; + errors = []; + if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) { + var error = new Error('Cannot read private key. ' + + 'ASN.1 object does not contain an RSAPrivateKey.'); + error.errors = errors; + throw error; + } + + // Note: Version is currently ignored. + // capture.privateKeyVersion + // FIXME: inefficient, get a BigInteger that uses byte strings + var n, e, d, p, q, dP, dQ, qInv; + n = forge.util.createBuffer(capture.privateKeyModulus).toHex(); + e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex(); + d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex(); + p = forge.util.createBuffer(capture.privateKeyPrime1).toHex(); + q = forge.util.createBuffer(capture.privateKeyPrime2).toHex(); + dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex(); + dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex(); + qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex(); + + // set private key + return pki.setRsaPrivateKey( + new BigInteger(n, 16), + new BigInteger(e, 16), + new BigInteger(d, 16), + new BigInteger(p, 16), + new BigInteger(q, 16), + new BigInteger(dP, 16), + new BigInteger(dQ, 16), + new BigInteger(qInv, 16)); +}; + +/** + * Converts a private key to an ASN.1 RSAPrivateKey. + * + * @param key the private key. + * + * @return the ASN.1 representation of an RSAPrivateKey. + */ +pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) { + // RSAPrivateKey + return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ + // version (0 = only 2 primes, 1 multiple primes) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + asn1.integerToDer(0).getBytes()), + // modulus (n) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.n)), + // publicExponent (e) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.e)), + // privateExponent (d) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.d)), + // privateKeyPrime1 (p) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.p)), + // privateKeyPrime2 (q) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.q)), + // privateKeyExponent1 (dP) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.dP)), + // privateKeyExponent2 (dQ) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.dQ)), + // coefficient (qInv) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.qInv)) + ]); +}; + +/** + * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey. + * + * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey. + * + * @return the public key. + */ +pki.publicKeyFromAsn1 = function(obj) { + // get SubjectPublicKeyInfo + var capture = {}; + var errors = []; + if(asn1.validate(obj, publicKeyValidator, capture, errors)) { + // get oid + var oid = asn1.derToOid(capture.publicKeyOid); + if(oid !== pki.oids.rsaEncryption) { + var error = new Error('Cannot read public key. Unknown OID.'); + error.oid = oid; + throw error; + } + obj = capture.rsaPublicKey; + } + + // get RSA params + errors = []; + if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) { + var error = new Error('Cannot read public key. ' + + 'ASN.1 object does not contain an RSAPublicKey.'); + error.errors = errors; + throw error; + } + + // FIXME: inefficient, get a BigInteger that uses byte strings + var n = forge.util.createBuffer(capture.publicKeyModulus).toHex(); + var e = forge.util.createBuffer(capture.publicKeyExponent).toHex(); + + // set public key + return pki.setRsaPublicKey( + new BigInteger(n, 16), + new BigInteger(e, 16)); +}; + +/** + * Converts a public key to an ASN.1 SubjectPublicKeyInfo. + * + * @param key the public key. + * + * @return the asn1 representation of a SubjectPublicKeyInfo. + */ +pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) { + // SubjectPublicKeyInfo + return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ + // AlgorithmIdentifier + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ + // algorithm + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false, + asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), + // parameters (null) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') + ]), + // subjectPublicKey + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [ + pki.publicKeyToRSAPublicKey(key) + ]) + ]); +}; + +/** + * Converts a public key to an ASN.1 RSAPublicKey. + * + * @param key the public key. + * + * @return the asn1 representation of a RSAPublicKey. + */ +pki.publicKeyToRSAPublicKey = function(key) { + // RSAPublicKey + return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ + // modulus (n) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.n)), + // publicExponent (e) + asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, + _bnToBytes(key.e)) + ]); +}; + +/** + * Encodes a message using PKCS#1 v1.5 padding. + * + * @param m the message to encode. + * @param key the RSA key to use. + * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02 + * (for encryption). + * + * @return the padded byte buffer. + */ +function _encodePkcs1_v1_5(m, key, bt) { + var eb = forge.util.createBuffer(); + + // get the length of the modulus in bytes + var k = Math.ceil(key.n.bitLength() / 8); + + /* use PKCS#1 v1.5 padding */ + if(m.length > (k - 11)) { + var error = new Error('Message is too long for PKCS#1 v1.5 padding.'); + error.length = m.length; + error.max = k - 11; + throw error; + } + + /* A block type BT, a padding string PS, and the data D shall be + formatted into an octet string EB, the encryption block: + + EB = 00 || BT || PS || 00 || D + + The block type BT shall be a single octet indicating the structure of + the encryption block. For this version of the document it shall have + value 00, 01, or 02. For a private-key operation, the block type + shall be 00 or 01. For a public-key operation, it shall be 02. + + The padding string PS shall consist of k-3-||D|| octets. For block + type 00, the octets shall have value 00; for block type 01, they + shall have value FF; and for block type 02, they shall be + pseudorandomly generated and nonzero. This makes the length of the + encryption block EB equal to k. */ + + // build the encryption block + eb.putByte(0x00); + eb.putByte(bt); + + // create the padding + var padNum = k - 3 - m.length; + var padByte; + // private key op + if(bt === 0x00 || bt === 0x01) { + padByte = (bt === 0x00) ? 0x00 : 0xFF; + for(var i = 0; i < padNum; ++i) { + eb.putByte(padByte); + } + } else { + // public key op + // pad with random non-zero values + while(padNum > 0) { + var numZeros = 0; + var padBytes = forge.random.getBytes(padNum); + for(var i = 0; i < padNum; ++i) { + padByte = padBytes.charCodeAt(i); + if(padByte === 0) { + ++numZeros; + } else { + eb.putByte(padByte); + } + } + padNum = numZeros; + } + } + + // zero followed by message + eb.putByte(0x00); + eb.putBytes(m); + + return eb; +} + +/** + * Decodes a message using PKCS#1 v1.5 padding. + * + * @param em the message to decode. + * @param key the RSA key to use. + * @param pub true if the key is a public key, false if it is private. + * @param ml the message length, if specified. + * + * @return the decoded bytes. + */ +function _decodePkcs1_v1_5(em, key, pub, ml) { + // get the length of the modulus in bytes + var k = Math.ceil(key.n.bitLength() / 8); + + /* It is an error if any of the following conditions occurs: + + 1. The encryption block EB cannot be parsed unambiguously. + 2. The padding string PS consists of fewer than eight octets + or is inconsisent with the block type BT. + 3. The decryption process is a public-key operation and the block + type BT is not 00 or 01, or the decryption process is a + private-key operation and the block type is not 02. + */ + + // parse the encryption block + var eb = forge.util.createBuffer(em); + var first = eb.getByte(); + var bt = eb.getByte(); + if(first !== 0x00 || + (pub && bt !== 0x00 && bt !== 0x01) || + (!pub && bt != 0x02) || + (pub && bt === 0x00 && typeof(ml) === 'undefined')) { + throw new Error('Encryption block is invalid.'); + } + + var padNum = 0; + if(bt === 0x00) { + // check all padding bytes for 0x00 + padNum = k - 3 - ml; + for(var i = 0; i < padNum; ++i) { + if(eb.getByte() !== 0x00) { + throw new Error('Encryption block is invalid.'); + } + } + } else if(bt === 0x01) { + // find the first byte that isn't 0xFF, should be after all padding + padNum = 0; + while(eb.length() > 1) { + if(eb.getByte() !== 0xFF) { + --eb.read; + break; + } + ++padNum; + } + } else if(bt === 0x02) { + // look for 0x00 byte + padNum = 0; + while(eb.length() > 1) { + if(eb.getByte() === 0x00) { + --eb.read; + break; + } + ++padNum; + } + } + + // zero must be 0x00 and padNum must be (k - 3 - message length) + var zero = eb.getByte(); + if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) { + throw new Error('Encryption block is invalid.'); + } + + return eb.getBytes(); +} + +/** + * Runs the key-generation algorithm asynchronously, either in the background + * via Web Workers, or using the main thread and setImmediate. + * + * @param state the key-pair generation state. + * @param [options] options for key-pair generation: + * workerScript the worker script URL. + * workers the number of web workers (if supported) to use, + * (default: 2, -1 to use estimated cores minus one). + * workLoad the size of the work load, ie: number of possible prime + * numbers for each web worker to check per work assignment, + * (default: 100). + * @param callback(err, keypair) called once the operation completes. + */ +function _generateKeyPair(state, options, callback) { + if(typeof options === 'function') { + callback = options; + options = {}; + } + options = options || {}; + + var opts = { + algorithm: { + name: options.algorithm || 'PRIMEINC', + options: { + workers: options.workers || 2, + workLoad: options.workLoad || 100, + workerScript: options.workerScript + } + } + }; + if('prng' in options) { + opts.prng = options.prng; + } + + generate(); + + function generate() { + // find p and then q (done in series to simplify) + getPrime(state.pBits, function(err, num) { + if(err) { + return callback(err); + } + state.p = num; + if(state.q !== null) { + return finish(err, state.q); + } + getPrime(state.qBits, finish); + }); + } + + function getPrime(bits, callback) { + forge.prime.generateProbablePrime(bits, opts, callback); + } + + function finish(err, num) { + if(err) { + return callback(err); + } + + // set q + state.q = num; + + // ensure p is larger than q (swap them if not) + if(state.p.compareTo(state.q) < 0) { + var tmp = state.p; + state.p = state.q; + state.q = tmp; + } + + // ensure p is coprime with e + if(state.p.subtract(BigInteger.ONE).gcd(state.e) + .compareTo(BigInteger.ONE) !== 0) { + state.p = null; + generate(); + return; + } + + // ensure q is coprime with e + if(state.q.subtract(BigInteger.ONE).gcd(state.e) + .compareTo(BigInteger.ONE) !== 0) { + state.q = null; + getPrime(state.qBits, finish); + return; + } + + // compute phi: (p - 1)(q - 1) (Euler's totient function) + state.p1 = state.p.subtract(BigInteger.ONE); + state.q1 = state.q.subtract(BigInteger.ONE); + state.phi = state.p1.multiply(state.q1); + + // ensure e and phi are coprime + if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) { + // phi and e aren't coprime, so generate a new p and q + state.p = state.q = null; + generate(); + return; + } + + // create n, ensure n is has the right number of bits + state.n = state.p.multiply(state.q); + if(state.n.bitLength() !== state.bits) { + // failed, get new q + state.q = null; + getPrime(state.qBits, finish); + return; + } + + // set keys + var d = state.e.modInverse(state.phi); + state.keys = { + privateKey: pki.rsa.setPrivateKey( + state.n, state.e, d, state.p, state.q, + d.mod(state.p1), d.mod(state.q1), + state.q.modInverse(state.p)), + publicKey: pki.rsa.setPublicKey(state.n, state.e) + }; + + callback(null, state.keys); + } +} + +/** + * Converts a positive BigInteger into 2's-complement big-endian bytes. + * + * @param b the big integer to convert. + * + * @return the bytes. + */ +function _bnToBytes(b) { + // prepend 0x00 if first byte >= 0x80 + var hex = b.toString(16); + if(hex[0] >= '8') { + hex = '00' + hex; + } + return forge.util.hexToBytes(hex); +} + +/** + * Returns the required number of Miller-Rabin tests to generate a + * prime with an error probability of (1/2)^80. + * + * See Handbook of Applied Cryptography Chapter 4, Table 4.4. + * + * @param bits the bit size. + * + * @return the required number of iterations. + */ +function _getMillerRabinTests(bits) { + if(bits <= 100) return 27; + if(bits <= 150) return 18; + if(bits <= 200) return 15; + if(bits <= 250) return 12; + if(bits <= 300) return 9; + if(bits <= 350) return 8; + if(bits <= 400) return 7; + if(bits <= 500) return 6; + if(bits <= 600) return 5; + if(bits <= 800) return 4; + if(bits <= 1250) return 3; + return 2; +} + +} // end module implementation + +/* ########## Begin module wrapper ########## */ +var name = 'rsa'; +if(typeof define !== 'function') { + // NodeJS -> AMD + if(typeof module === 'object' && module.exports) { + var nodeJS = true; + define = function(ids, factory) { + factory(require, module); + }; + } else { + // <script> + if(typeof forge === 'undefined') { + forge = {}; + } + return initModule(forge); + } +} +// AMD +var deps; +var defineFunc = function(require, module) { + module.exports = function(forge) { + var mods = deps.map(function(dep) { + return require(dep); + }).concat(initModule); + // handle circular dependencies + forge = forge || {}; + forge.defined = forge.defined || {}; + if(forge.defined[name]) { + return forge[name]; + } + forge.defined[name] = true; + for(var i = 0; i < mods.length; ++i) { + mods[i](forge); + } + return forge[name]; + }; +}; +var tmpDefine = define; +define = function(ids, factory) { + deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2); + if(nodeJS) { + delete define; + return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0)); + } + define = tmpDefine; + return define.apply(null, Array.prototype.slice.call(arguments, 0)); +}; +define([ + 'require', + 'module', + './asn1', + './jsbn', + './oids', + './pkcs1', + './prime', + './random', + './util' +], function() { + defineFunc.apply(null, Array.prototype.slice.call(arguments, 0)); +}); +})(); |