summaryrefslogtreecommitdiff
path: root/includes/external/school/node_modules/node-forge/js/aesCipherSuites.js
blob: 7087ca60b9607433393cbc46b0922da277c8a21a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/**
 * A Javascript implementation of AES Cipher Suites for TLS.
 *
 * @author Dave Longley
 *
 * Copyright (c) 2009-2015 Digital Bazaar, Inc.
 *
 */
(function() {
/* ########## Begin module implementation ########## */
function initModule(forge) {

var tls = forge.tls;

/**
 * Supported cipher suites.
 */
tls.CipherSuites['TLS_RSA_WITH_AES_128_CBC_SHA'] = {
  id: [0x00,0x2f],
  name: 'TLS_RSA_WITH_AES_128_CBC_SHA',
  initSecurityParameters: function(sp) {
    sp.bulk_cipher_algorithm = tls.BulkCipherAlgorithm.aes;
    sp.cipher_type = tls.CipherType.block;
    sp.enc_key_length = 16;
    sp.block_length = 16;
    sp.fixed_iv_length = 16;
    sp.record_iv_length = 16;
    sp.mac_algorithm = tls.MACAlgorithm.hmac_sha1;
    sp.mac_length = 20;
    sp.mac_key_length = 20;
  },
  initConnectionState: initConnectionState
};
tls.CipherSuites['TLS_RSA_WITH_AES_256_CBC_SHA'] = {
  id: [0x00,0x35],
  name: 'TLS_RSA_WITH_AES_256_CBC_SHA',
  initSecurityParameters: function(sp) {
    sp.bulk_cipher_algorithm = tls.BulkCipherAlgorithm.aes;
    sp.cipher_type = tls.CipherType.block;
    sp.enc_key_length = 32;
    sp.block_length = 16;
    sp.fixed_iv_length = 16;
    sp.record_iv_length = 16;
    sp.mac_algorithm = tls.MACAlgorithm.hmac_sha1;
    sp.mac_length = 20;
    sp.mac_key_length = 20;
  },
  initConnectionState: initConnectionState
};

function initConnectionState(state, c, sp) {
  var client = (c.entity === forge.tls.ConnectionEnd.client);

  // cipher setup
  state.read.cipherState = {
    init: false,
    cipher: forge.cipher.createDecipher('AES-CBC', client ?
      sp.keys.server_write_key : sp.keys.client_write_key),
    iv: client ? sp.keys.server_write_IV : sp.keys.client_write_IV
  };
  state.write.cipherState = {
    init: false,
    cipher: forge.cipher.createCipher('AES-CBC', client ?
      sp.keys.client_write_key : sp.keys.server_write_key),
    iv: client ? sp.keys.client_write_IV : sp.keys.server_write_IV
  };
  state.read.cipherFunction = decrypt_aes_cbc_sha1;
  state.write.cipherFunction = encrypt_aes_cbc_sha1;

  // MAC setup
  state.read.macLength = state.write.macLength = sp.mac_length;
  state.read.macFunction = state.write.macFunction = tls.hmac_sha1;
}

/**
 * Encrypts the TLSCompressed record into a TLSCipherText record using AES
 * in CBC mode.
 *
 * @param record the TLSCompressed record to encrypt.
 * @param s the ConnectionState to use.
 *
 * @return true on success, false on failure.
 */
function encrypt_aes_cbc_sha1(record, s) {
  var rval = false;

  // append MAC to fragment, update sequence number
  var mac = s.macFunction(s.macKey, s.sequenceNumber, record);
  record.fragment.putBytes(mac);
  s.updateSequenceNumber();

  // TLS 1.1+ use an explicit IV every time to protect against CBC attacks
  var iv;
  if(record.version.minor === tls.Versions.TLS_1_0.minor) {
    // use the pre-generated IV when initializing for TLS 1.0, otherwise use
    // the residue from the previous encryption
    iv = s.cipherState.init ? null : s.cipherState.iv;
  } else {
    iv = forge.random.getBytesSync(16);
  }

  s.cipherState.init = true;

  // start cipher
  var cipher = s.cipherState.cipher;
  cipher.start({iv: iv});

  // TLS 1.1+ write IV into output
  if(record.version.minor >= tls.Versions.TLS_1_1.minor) {
    cipher.output.putBytes(iv);
  }

  // do encryption (default padding is appropriate)
  cipher.update(record.fragment);
  if(cipher.finish(encrypt_aes_cbc_sha1_padding)) {
    // set record fragment to encrypted output
    record.fragment = cipher.output;
    record.length = record.fragment.length();
    rval = true;
  }

  return rval;
}

/**
 * Handles padding for aes_cbc_sha1 in encrypt mode.
 *
 * @param blockSize the block size.
 * @param input the input buffer.
 * @param decrypt true in decrypt mode, false in encrypt mode.
 *
 * @return true on success, false on failure.
 */
function encrypt_aes_cbc_sha1_padding(blockSize, input, decrypt) {
  /* The encrypted data length (TLSCiphertext.length) is one more than the sum
   of SecurityParameters.block_length, TLSCompressed.length,
   SecurityParameters.mac_length, and padding_length.

   The padding may be any length up to 255 bytes long, as long as it results in
   the TLSCiphertext.length being an integral multiple of the block length.
   Lengths longer than necessary might be desirable to frustrate attacks on a
   protocol based on analysis of the lengths of exchanged messages. Each uint8
   in the padding data vector must be filled with the padding length value.

   The padding length should be such that the total size of the
   GenericBlockCipher structure is a multiple of the cipher's block length.
   Legal values range from zero to 255, inclusive. This length specifies the
   length of the padding field exclusive of the padding_length field itself.

   This is slightly different from PKCS#7 because the padding value is 1
   less than the actual number of padding bytes if you include the
   padding_length uint8 itself as a padding byte. */
  if(!decrypt) {
    // get the number of padding bytes required to reach the blockSize and
    // subtract 1 for the padding value (to make room for the padding_length
    // uint8)
    var padding = blockSize - (input.length() % blockSize);
    input.fillWithByte(padding - 1, padding);
  }
  return true;
}

/**
 * Handles padding for aes_cbc_sha1 in decrypt mode.
 *
 * @param blockSize the block size.
 * @param output the output buffer.
 * @param decrypt true in decrypt mode, false in encrypt mode.
 *
 * @return true on success, false on failure.
 */
function decrypt_aes_cbc_sha1_padding(blockSize, output, decrypt) {
  var rval = true;
  if(decrypt) {
    /* The last byte in the output specifies the number of padding bytes not
      including itself. Each of the padding bytes has the same value as that
      last byte (known as the padding_length). Here we check all padding
      bytes to ensure they have the value of padding_length even if one of
      them is bad in order to ward-off timing attacks. */
    var len = output.length();
    var paddingLength = output.last();
    for(var i = len - 1 - paddingLength; i < len - 1; ++i) {
      rval = rval && (output.at(i) == paddingLength);
    }
    if(rval) {
      // trim off padding bytes and last padding length byte
      output.truncate(paddingLength + 1);
    }
  }
  return rval;
}

/**
 * Decrypts a TLSCipherText record into a TLSCompressed record using
 * AES in CBC mode.
 *
 * @param record the TLSCipherText record to decrypt.
 * @param s the ConnectionState to use.
 *
 * @return true on success, false on failure.
 */
var count = 0;
function decrypt_aes_cbc_sha1(record, s) {
  var rval = false;
  ++count;

  var iv;
  if(record.version.minor === tls.Versions.TLS_1_0.minor) {
    // use pre-generated IV when initializing for TLS 1.0, otherwise use the
    // residue from the previous decryption
    iv = s.cipherState.init ? null : s.cipherState.iv;
  } else {
    // TLS 1.1+ use an explicit IV every time to protect against CBC attacks
    // that is appended to the record fragment
    iv = record.fragment.getBytes(16);
  }

  s.cipherState.init = true;

  // start cipher
  var cipher = s.cipherState.cipher;
  cipher.start({iv: iv});

  // do decryption
  cipher.update(record.fragment);
  rval = cipher.finish(decrypt_aes_cbc_sha1_padding);

  // even if decryption fails, keep going to minimize timing attacks

  // decrypted data:
  // first (len - 20) bytes = application data
  // last 20 bytes          = MAC
  var macLen = s.macLength;

  // create a random MAC to check against should the mac length check fail
  // Note: do this regardless of the failure to keep timing consistent
  var mac = forge.random.getBytesSync(macLen);

  // get fragment and mac
  var len = cipher.output.length();
  if(len >= macLen) {
    record.fragment = cipher.output.getBytes(len - macLen);
    mac = cipher.output.getBytes(macLen);
  } else {
    // bad data, but get bytes anyway to try to keep timing consistent
    record.fragment = cipher.output.getBytes();
  }
  record.fragment = forge.util.createBuffer(record.fragment);
  record.length = record.fragment.length();

  // see if data integrity checks out, update sequence number
  var mac2 = s.macFunction(s.macKey, s.sequenceNumber, record);
  s.updateSequenceNumber();
  rval = compareMacs(s.macKey, mac, mac2) && rval;
  return rval;
}

/**
 * Safely compare two MACs. This function will compare two MACs in a way
 * that protects against timing attacks.
 *
 * TODO: Expose elsewhere as a utility API.
 *
 * See: https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/
 *
 * @param key the MAC key to use.
 * @param mac1 as a binary-encoded string of bytes.
 * @param mac2 as a binary-encoded string of bytes.
 *
 * @return true if the MACs are the same, false if not.
 */
function compareMacs(key, mac1, mac2) {
  var hmac = forge.hmac.create();

  hmac.start('SHA1', key);
  hmac.update(mac1);
  mac1 = hmac.digest().getBytes();

  hmac.start(null, null);
  hmac.update(mac2);
  mac2 = hmac.digest().getBytes();

  return mac1 === mac2;
}

} // end module implementation

/* ########## Begin module wrapper ########## */
var name = 'aesCipherSuites';
if(typeof define !== 'function') {
  // NodeJS -> AMD
  if(typeof module === 'object' && module.exports) {
    var nodeJS = true;
    define = function(ids, factory) {
      factory(require, module);
    };
  } else {
    // <script>
    if(typeof forge === 'undefined') {
      forge = {};
    }
    return initModule(forge);
  }
}
// AMD
var deps;
var defineFunc = function(require, module) {
  module.exports = function(forge) {
    var mods = deps.map(function(dep) {
      return require(dep);
    }).concat(initModule);
    // handle circular dependencies
    forge = forge || {};
    forge.defined = forge.defined || {};
    if(forge.defined[name]) {
      return forge[name];
    }
    forge.defined[name] = true;
    for(var i = 0; i < mods.length; ++i) {
      mods[i](forge);
    }
    return forge[name];
  };
};
var tmpDefine = define;
define = function(ids, factory) {
  deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
  if(nodeJS) {
    delete define;
    return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
  }
  define = tmpDefine;
  return define.apply(null, Array.prototype.slice.call(arguments, 0));
};
define(['require', 'module', './aes', './tls'], function() {
  defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
});
})();