summaryrefslogtreecommitdiff
path: root/school/node_modules/pako/lib/zlib/trees.js
diff options
context:
space:
mode:
Diffstat (limited to 'school/node_modules/pako/lib/zlib/trees.js')
-rw-r--r--school/node_modules/pako/lib/zlib/trees.js1222
1 files changed, 0 insertions, 1222 deletions
diff --git a/school/node_modules/pako/lib/zlib/trees.js b/school/node_modules/pako/lib/zlib/trees.js
deleted file mode 100644
index aaf15db..0000000
--- a/school/node_modules/pako/lib/zlib/trees.js
+++ /dev/null
@@ -1,1222 +0,0 @@
-'use strict';
-
-// (C) 1995-2013 Jean-loup Gailly and Mark Adler
-// (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
-//
-// This software is provided 'as-is', without any express or implied
-// warranty. In no event will the authors be held liable for any damages
-// arising from the use of this software.
-//
-// Permission is granted to anyone to use this software for any purpose,
-// including commercial applications, and to alter it and redistribute it
-// freely, subject to the following restrictions:
-//
-// 1. The origin of this software must not be misrepresented; you must not
-// claim that you wrote the original software. If you use this software
-// in a product, an acknowledgment in the product documentation would be
-// appreciated but is not required.
-// 2. Altered source versions must be plainly marked as such, and must not be
-// misrepresented as being the original software.
-// 3. This notice may not be removed or altered from any source distribution.
-
-/* eslint-disable space-unary-ops */
-
-var utils = require('../utils/common');
-
-/* Public constants ==========================================================*/
-/* ===========================================================================*/
-
-
-//var Z_FILTERED = 1;
-//var Z_HUFFMAN_ONLY = 2;
-//var Z_RLE = 3;
-var Z_FIXED = 4;
-//var Z_DEFAULT_STRATEGY = 0;
-
-/* Possible values of the data_type field (though see inflate()) */
-var Z_BINARY = 0;
-var Z_TEXT = 1;
-//var Z_ASCII = 1; // = Z_TEXT
-var Z_UNKNOWN = 2;
-
-/*============================================================================*/
-
-
-function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
-
-// From zutil.h
-
-var STORED_BLOCK = 0;
-var STATIC_TREES = 1;
-var DYN_TREES = 2;
-/* The three kinds of block type */
-
-var MIN_MATCH = 3;
-var MAX_MATCH = 258;
-/* The minimum and maximum match lengths */
-
-// From deflate.h
-/* ===========================================================================
- * Internal compression state.
- */
-
-var LENGTH_CODES = 29;
-/* number of length codes, not counting the special END_BLOCK code */
-
-var LITERALS = 256;
-/* number of literal bytes 0..255 */
-
-var L_CODES = LITERALS + 1 + LENGTH_CODES;
-/* number of Literal or Length codes, including the END_BLOCK code */
-
-var D_CODES = 30;
-/* number of distance codes */
-
-var BL_CODES = 19;
-/* number of codes used to transfer the bit lengths */
-
-var HEAP_SIZE = 2 * L_CODES + 1;
-/* maximum heap size */
-
-var MAX_BITS = 15;
-/* All codes must not exceed MAX_BITS bits */
-
-var Buf_size = 16;
-/* size of bit buffer in bi_buf */
-
-
-/* ===========================================================================
- * Constants
- */
-
-var MAX_BL_BITS = 7;
-/* Bit length codes must not exceed MAX_BL_BITS bits */
-
-var END_BLOCK = 256;
-/* end of block literal code */
-
-var REP_3_6 = 16;
-/* repeat previous bit length 3-6 times (2 bits of repeat count) */
-
-var REPZ_3_10 = 17;
-/* repeat a zero length 3-10 times (3 bits of repeat count) */
-
-var REPZ_11_138 = 18;
-/* repeat a zero length 11-138 times (7 bits of repeat count) */
-
-/* eslint-disable comma-spacing,array-bracket-spacing */
-var extra_lbits = /* extra bits for each length code */
- [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
-
-var extra_dbits = /* extra bits for each distance code */
- [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
-
-var extra_blbits = /* extra bits for each bit length code */
- [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
-
-var bl_order =
- [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
-/* eslint-enable comma-spacing,array-bracket-spacing */
-
-/* The lengths of the bit length codes are sent in order of decreasing
- * probability, to avoid transmitting the lengths for unused bit length codes.
- */
-
-/* ===========================================================================
- * Local data. These are initialized only once.
- */
-
-// We pre-fill arrays with 0 to avoid uninitialized gaps
-
-var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
-
-// !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
-var static_ltree = new Array((L_CODES + 2) * 2);
-zero(static_ltree);
-/* The static literal tree. Since the bit lengths are imposed, there is no
- * need for the L_CODES extra codes used during heap construction. However
- * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
- * below).
- */
-
-var static_dtree = new Array(D_CODES * 2);
-zero(static_dtree);
-/* The static distance tree. (Actually a trivial tree since all codes use
- * 5 bits.)
- */
-
-var _dist_code = new Array(DIST_CODE_LEN);
-zero(_dist_code);
-/* Distance codes. The first 256 values correspond to the distances
- * 3 .. 258, the last 256 values correspond to the top 8 bits of
- * the 15 bit distances.
- */
-
-var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
-zero(_length_code);
-/* length code for each normalized match length (0 == MIN_MATCH) */
-
-var base_length = new Array(LENGTH_CODES);
-zero(base_length);
-/* First normalized length for each code (0 = MIN_MATCH) */
-
-var base_dist = new Array(D_CODES);
-zero(base_dist);
-/* First normalized distance for each code (0 = distance of 1) */
-
-
-function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
-
- this.static_tree = static_tree; /* static tree or NULL */
- this.extra_bits = extra_bits; /* extra bits for each code or NULL */
- this.extra_base = extra_base; /* base index for extra_bits */
- this.elems = elems; /* max number of elements in the tree */
- this.max_length = max_length; /* max bit length for the codes */
-
- // show if `static_tree` has data or dummy - needed for monomorphic objects
- this.has_stree = static_tree && static_tree.length;
-}
-
-
-var static_l_desc;
-var static_d_desc;
-var static_bl_desc;
-
-
-function TreeDesc(dyn_tree, stat_desc) {
- this.dyn_tree = dyn_tree; /* the dynamic tree */
- this.max_code = 0; /* largest code with non zero frequency */
- this.stat_desc = stat_desc; /* the corresponding static tree */
-}
-
-
-
-function d_code(dist) {
- return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
-}
-
-
-/* ===========================================================================
- * Output a short LSB first on the stream.
- * IN assertion: there is enough room in pendingBuf.
- */
-function put_short(s, w) {
-// put_byte(s, (uch)((w) & 0xff));
-// put_byte(s, (uch)((ush)(w) >> 8));
- s.pending_buf[s.pending++] = (w) & 0xff;
- s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
-}
-
-
-/* ===========================================================================
- * Send a value on a given number of bits.
- * IN assertion: length <= 16 and value fits in length bits.
- */
-function send_bits(s, value, length) {
- if (s.bi_valid > (Buf_size - length)) {
- s.bi_buf |= (value << s.bi_valid) & 0xffff;
- put_short(s, s.bi_buf);
- s.bi_buf = value >> (Buf_size - s.bi_valid);
- s.bi_valid += length - Buf_size;
- } else {
- s.bi_buf |= (value << s.bi_valid) & 0xffff;
- s.bi_valid += length;
- }
-}
-
-
-function send_code(s, c, tree) {
- send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
-}
-
-
-/* ===========================================================================
- * Reverse the first len bits of a code, using straightforward code (a faster
- * method would use a table)
- * IN assertion: 1 <= len <= 15
- */
-function bi_reverse(code, len) {
- var res = 0;
- do {
- res |= code & 1;
- code >>>= 1;
- res <<= 1;
- } while (--len > 0);
- return res >>> 1;
-}
-
-
-/* ===========================================================================
- * Flush the bit buffer, keeping at most 7 bits in it.
- */
-function bi_flush(s) {
- if (s.bi_valid === 16) {
- put_short(s, s.bi_buf);
- s.bi_buf = 0;
- s.bi_valid = 0;
-
- } else if (s.bi_valid >= 8) {
- s.pending_buf[s.pending++] = s.bi_buf & 0xff;
- s.bi_buf >>= 8;
- s.bi_valid -= 8;
- }
-}
-
-
-/* ===========================================================================
- * Compute the optimal bit lengths for a tree and update the total bit length
- * for the current block.
- * IN assertion: the fields freq and dad are set, heap[heap_max] and
- * above are the tree nodes sorted by increasing frequency.
- * OUT assertions: the field len is set to the optimal bit length, the
- * array bl_count contains the frequencies for each bit length.
- * The length opt_len is updated; static_len is also updated if stree is
- * not null.
- */
-function gen_bitlen(s, desc)
-// deflate_state *s;
-// tree_desc *desc; /* the tree descriptor */
-{
- var tree = desc.dyn_tree;
- var max_code = desc.max_code;
- var stree = desc.stat_desc.static_tree;
- var has_stree = desc.stat_desc.has_stree;
- var extra = desc.stat_desc.extra_bits;
- var base = desc.stat_desc.extra_base;
- var max_length = desc.stat_desc.max_length;
- var h; /* heap index */
- var n, m; /* iterate over the tree elements */
- var bits; /* bit length */
- var xbits; /* extra bits */
- var f; /* frequency */
- var overflow = 0; /* number of elements with bit length too large */
-
- for (bits = 0; bits <= MAX_BITS; bits++) {
- s.bl_count[bits] = 0;
- }
-
- /* In a first pass, compute the optimal bit lengths (which may
- * overflow in the case of the bit length tree).
- */
- tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
-
- for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
- n = s.heap[h];
- bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
- if (bits > max_length) {
- bits = max_length;
- overflow++;
- }
- tree[n * 2 + 1]/*.Len*/ = bits;
- /* We overwrite tree[n].Dad which is no longer needed */
-
- if (n > max_code) { continue; } /* not a leaf node */
-
- s.bl_count[bits]++;
- xbits = 0;
- if (n >= base) {
- xbits = extra[n - base];
- }
- f = tree[n * 2]/*.Freq*/;
- s.opt_len += f * (bits + xbits);
- if (has_stree) {
- s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
- }
- }
- if (overflow === 0) { return; }
-
- // Trace((stderr,"\nbit length overflow\n"));
- /* This happens for example on obj2 and pic of the Calgary corpus */
-
- /* Find the first bit length which could increase: */
- do {
- bits = max_length - 1;
- while (s.bl_count[bits] === 0) { bits--; }
- s.bl_count[bits]--; /* move one leaf down the tree */
- s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
- s.bl_count[max_length]--;
- /* The brother of the overflow item also moves one step up,
- * but this does not affect bl_count[max_length]
- */
- overflow -= 2;
- } while (overflow > 0);
-
- /* Now recompute all bit lengths, scanning in increasing frequency.
- * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
- * lengths instead of fixing only the wrong ones. This idea is taken
- * from 'ar' written by Haruhiko Okumura.)
- */
- for (bits = max_length; bits !== 0; bits--) {
- n = s.bl_count[bits];
- while (n !== 0) {
- m = s.heap[--h];
- if (m > max_code) { continue; }
- if (tree[m * 2 + 1]/*.Len*/ !== bits) {
- // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
- s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
- tree[m * 2 + 1]/*.Len*/ = bits;
- }
- n--;
- }
- }
-}
-
-
-/* ===========================================================================
- * Generate the codes for a given tree and bit counts (which need not be
- * optimal).
- * IN assertion: the array bl_count contains the bit length statistics for
- * the given tree and the field len is set for all tree elements.
- * OUT assertion: the field code is set for all tree elements of non
- * zero code length.
- */
-function gen_codes(tree, max_code, bl_count)
-// ct_data *tree; /* the tree to decorate */
-// int max_code; /* largest code with non zero frequency */
-// ushf *bl_count; /* number of codes at each bit length */
-{
- var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
- var code = 0; /* running code value */
- var bits; /* bit index */
- var n; /* code index */
-
- /* The distribution counts are first used to generate the code values
- * without bit reversal.
- */
- for (bits = 1; bits <= MAX_BITS; bits++) {
- next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
- }
- /* Check that the bit counts in bl_count are consistent. The last code
- * must be all ones.
- */
- //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
- // "inconsistent bit counts");
- //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
-
- for (n = 0; n <= max_code; n++) {
- var len = tree[n * 2 + 1]/*.Len*/;
- if (len === 0) { continue; }
- /* Now reverse the bits */
- tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
-
- //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
- // n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
- }
-}
-
-
-/* ===========================================================================
- * Initialize the various 'constant' tables.
- */
-function tr_static_init() {
- var n; /* iterates over tree elements */
- var bits; /* bit counter */
- var length; /* length value */
- var code; /* code value */
- var dist; /* distance index */
- var bl_count = new Array(MAX_BITS + 1);
- /* number of codes at each bit length for an optimal tree */
-
- // do check in _tr_init()
- //if (static_init_done) return;
-
- /* For some embedded targets, global variables are not initialized: */
-/*#ifdef NO_INIT_GLOBAL_POINTERS
- static_l_desc.static_tree = static_ltree;
- static_l_desc.extra_bits = extra_lbits;
- static_d_desc.static_tree = static_dtree;
- static_d_desc.extra_bits = extra_dbits;
- static_bl_desc.extra_bits = extra_blbits;
-#endif*/
-
- /* Initialize the mapping length (0..255) -> length code (0..28) */
- length = 0;
- for (code = 0; code < LENGTH_CODES - 1; code++) {
- base_length[code] = length;
- for (n = 0; n < (1 << extra_lbits[code]); n++) {
- _length_code[length++] = code;
- }
- }
- //Assert (length == 256, "tr_static_init: length != 256");
- /* Note that the length 255 (match length 258) can be represented
- * in two different ways: code 284 + 5 bits or code 285, so we
- * overwrite length_code[255] to use the best encoding:
- */
- _length_code[length - 1] = code;
-
- /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
- dist = 0;
- for (code = 0; code < 16; code++) {
- base_dist[code] = dist;
- for (n = 0; n < (1 << extra_dbits[code]); n++) {
- _dist_code[dist++] = code;
- }
- }
- //Assert (dist == 256, "tr_static_init: dist != 256");
- dist >>= 7; /* from now on, all distances are divided by 128 */
- for (; code < D_CODES; code++) {
- base_dist[code] = dist << 7;
- for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
- _dist_code[256 + dist++] = code;
- }
- }
- //Assert (dist == 256, "tr_static_init: 256+dist != 512");
-
- /* Construct the codes of the static literal tree */
- for (bits = 0; bits <= MAX_BITS; bits++) {
- bl_count[bits] = 0;
- }
-
- n = 0;
- while (n <= 143) {
- static_ltree[n * 2 + 1]/*.Len*/ = 8;
- n++;
- bl_count[8]++;
- }
- while (n <= 255) {
- static_ltree[n * 2 + 1]/*.Len*/ = 9;
- n++;
- bl_count[9]++;
- }
- while (n <= 279) {
- static_ltree[n * 2 + 1]/*.Len*/ = 7;
- n++;
- bl_count[7]++;
- }
- while (n <= 287) {
- static_ltree[n * 2 + 1]/*.Len*/ = 8;
- n++;
- bl_count[8]++;
- }
- /* Codes 286 and 287 do not exist, but we must include them in the
- * tree construction to get a canonical Huffman tree (longest code
- * all ones)
- */
- gen_codes(static_ltree, L_CODES + 1, bl_count);
-
- /* The static distance tree is trivial: */
- for (n = 0; n < D_CODES; n++) {
- static_dtree[n * 2 + 1]/*.Len*/ = 5;
- static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
- }
-
- // Now data ready and we can init static trees
- static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
- static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
- static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
-
- //static_init_done = true;
-}
-
-
-/* ===========================================================================
- * Initialize a new block.
- */
-function init_block(s) {
- var n; /* iterates over tree elements */
-
- /* Initialize the trees. */
- for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
- for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
- for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
-
- s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
- s.opt_len = s.static_len = 0;
- s.last_lit = s.matches = 0;
-}
-
-
-/* ===========================================================================
- * Flush the bit buffer and align the output on a byte boundary
- */
-function bi_windup(s)
-{
- if (s.bi_valid > 8) {
- put_short(s, s.bi_buf);
- } else if (s.bi_valid > 0) {
- //put_byte(s, (Byte)s->bi_buf);
- s.pending_buf[s.pending++] = s.bi_buf;
- }
- s.bi_buf = 0;
- s.bi_valid = 0;
-}
-
-/* ===========================================================================
- * Copy a stored block, storing first the length and its
- * one's complement if requested.
- */
-function copy_block(s, buf, len, header)
-//DeflateState *s;
-//charf *buf; /* the input data */
-//unsigned len; /* its length */
-//int header; /* true if block header must be written */
-{
- bi_windup(s); /* align on byte boundary */
-
- if (header) {
- put_short(s, len);
- put_short(s, ~len);
- }
-// while (len--) {
-// put_byte(s, *buf++);
-// }
- utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
- s.pending += len;
-}
-
-/* ===========================================================================
- * Compares to subtrees, using the tree depth as tie breaker when
- * the subtrees have equal frequency. This minimizes the worst case length.
- */
-function smaller(tree, n, m, depth) {
- var _n2 = n * 2;
- var _m2 = m * 2;
- return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
- (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
-}
-
-/* ===========================================================================
- * Restore the heap property by moving down the tree starting at node k,
- * exchanging a node with the smallest of its two sons if necessary, stopping
- * when the heap property is re-established (each father smaller than its
- * two sons).
- */
-function pqdownheap(s, tree, k)
-// deflate_state *s;
-// ct_data *tree; /* the tree to restore */
-// int k; /* node to move down */
-{
- var v = s.heap[k];
- var j = k << 1; /* left son of k */
- while (j <= s.heap_len) {
- /* Set j to the smallest of the two sons: */
- if (j < s.heap_len &&
- smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
- j++;
- }
- /* Exit if v is smaller than both sons */
- if (smaller(tree, v, s.heap[j], s.depth)) { break; }
-
- /* Exchange v with the smallest son */
- s.heap[k] = s.heap[j];
- k = j;
-
- /* And continue down the tree, setting j to the left son of k */
- j <<= 1;
- }
- s.heap[k] = v;
-}
-
-
-// inlined manually
-// var SMALLEST = 1;
-
-/* ===========================================================================
- * Send the block data compressed using the given Huffman trees
- */
-function compress_block(s, ltree, dtree)
-// deflate_state *s;
-// const ct_data *ltree; /* literal tree */
-// const ct_data *dtree; /* distance tree */
-{
- var dist; /* distance of matched string */
- var lc; /* match length or unmatched char (if dist == 0) */
- var lx = 0; /* running index in l_buf */
- var code; /* the code to send */
- var extra; /* number of extra bits to send */
-
- if (s.last_lit !== 0) {
- do {
- dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
- lc = s.pending_buf[s.l_buf + lx];
- lx++;
-
- if (dist === 0) {
- send_code(s, lc, ltree); /* send a literal byte */
- //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
- } else {
- /* Here, lc is the match length - MIN_MATCH */
- code = _length_code[lc];
- send_code(s, code + LITERALS + 1, ltree); /* send the length code */
- extra = extra_lbits[code];
- if (extra !== 0) {
- lc -= base_length[code];
- send_bits(s, lc, extra); /* send the extra length bits */
- }
- dist--; /* dist is now the match distance - 1 */
- code = d_code(dist);
- //Assert (code < D_CODES, "bad d_code");
-
- send_code(s, code, dtree); /* send the distance code */
- extra = extra_dbits[code];
- if (extra !== 0) {
- dist -= base_dist[code];
- send_bits(s, dist, extra); /* send the extra distance bits */
- }
- } /* literal or match pair ? */
-
- /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
- //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
- // "pendingBuf overflow");
-
- } while (lx < s.last_lit);
- }
-
- send_code(s, END_BLOCK, ltree);
-}
-
-
-/* ===========================================================================
- * Construct one Huffman tree and assigns the code bit strings and lengths.
- * Update the total bit length for the current block.
- * IN assertion: the field freq is set for all tree elements.
- * OUT assertions: the fields len and code are set to the optimal bit length
- * and corresponding code. The length opt_len is updated; static_len is
- * also updated if stree is not null. The field max_code is set.
- */
-function build_tree(s, desc)
-// deflate_state *s;
-// tree_desc *desc; /* the tree descriptor */
-{
- var tree = desc.dyn_tree;
- var stree = desc.stat_desc.static_tree;
- var has_stree = desc.stat_desc.has_stree;
- var elems = desc.stat_desc.elems;
- var n, m; /* iterate over heap elements */
- var max_code = -1; /* largest code with non zero frequency */
- var node; /* new node being created */
-
- /* Construct the initial heap, with least frequent element in
- * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
- * heap[0] is not used.
- */
- s.heap_len = 0;
- s.heap_max = HEAP_SIZE;
-
- for (n = 0; n < elems; n++) {
- if (tree[n * 2]/*.Freq*/ !== 0) {
- s.heap[++s.heap_len] = max_code = n;
- s.depth[n] = 0;
-
- } else {
- tree[n * 2 + 1]/*.Len*/ = 0;
- }
- }
-
- /* The pkzip format requires that at least one distance code exists,
- * and that at least one bit should be sent even if there is only one
- * possible code. So to avoid special checks later on we force at least
- * two codes of non zero frequency.
- */
- while (s.heap_len < 2) {
- node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
- tree[node * 2]/*.Freq*/ = 1;
- s.depth[node] = 0;
- s.opt_len--;
-
- if (has_stree) {
- s.static_len -= stree[node * 2 + 1]/*.Len*/;
- }
- /* node is 0 or 1 so it does not have extra bits */
- }
- desc.max_code = max_code;
-
- /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
- * establish sub-heaps of increasing lengths:
- */
- for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
-
- /* Construct the Huffman tree by repeatedly combining the least two
- * frequent nodes.
- */
- node = elems; /* next internal node of the tree */
- do {
- //pqremove(s, tree, n); /* n = node of least frequency */
- /*** pqremove ***/
- n = s.heap[1/*SMALLEST*/];
- s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
- pqdownheap(s, tree, 1/*SMALLEST*/);
- /***/
-
- m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
-
- s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
- s.heap[--s.heap_max] = m;
-
- /* Create a new node father of n and m */
- tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
- s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
- tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
-
- /* and insert the new node in the heap */
- s.heap[1/*SMALLEST*/] = node++;
- pqdownheap(s, tree, 1/*SMALLEST*/);
-
- } while (s.heap_len >= 2);
-
- s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
-
- /* At this point, the fields freq and dad are set. We can now
- * generate the bit lengths.
- */
- gen_bitlen(s, desc);
-
- /* The field len is now set, we can generate the bit codes */
- gen_codes(tree, max_code, s.bl_count);
-}
-
-
-/* ===========================================================================
- * Scan a literal or distance tree to determine the frequencies of the codes
- * in the bit length tree.
- */
-function scan_tree(s, tree, max_code)
-// deflate_state *s;
-// ct_data *tree; /* the tree to be scanned */
-// int max_code; /* and its largest code of non zero frequency */
-{
- var n; /* iterates over all tree elements */
- var prevlen = -1; /* last emitted length */
- var curlen; /* length of current code */
-
- var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
-
- var count = 0; /* repeat count of the current code */
- var max_count = 7; /* max repeat count */
- var min_count = 4; /* min repeat count */
-
- if (nextlen === 0) {
- max_count = 138;
- min_count = 3;
- }
- tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
-
- for (n = 0; n <= max_code; n++) {
- curlen = nextlen;
- nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
-
- if (++count < max_count && curlen === nextlen) {
- continue;
-
- } else if (count < min_count) {
- s.bl_tree[curlen * 2]/*.Freq*/ += count;
-
- } else if (curlen !== 0) {
-
- if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
- s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
-
- } else if (count <= 10) {
- s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
-
- } else {
- s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
- }
-
- count = 0;
- prevlen = curlen;
-
- if (nextlen === 0) {
- max_count = 138;
- min_count = 3;
-
- } else if (curlen === nextlen) {
- max_count = 6;
- min_count = 3;
-
- } else {
- max_count = 7;
- min_count = 4;
- }
- }
-}
-
-
-/* ===========================================================================
- * Send a literal or distance tree in compressed form, using the codes in
- * bl_tree.
- */
-function send_tree(s, tree, max_code)
-// deflate_state *s;
-// ct_data *tree; /* the tree to be scanned */
-// int max_code; /* and its largest code of non zero frequency */
-{
- var n; /* iterates over all tree elements */
- var prevlen = -1; /* last emitted length */
- var curlen; /* length of current code */
-
- var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
-
- var count = 0; /* repeat count of the current code */
- var max_count = 7; /* max repeat count */
- var min_count = 4; /* min repeat count */
-
- /* tree[max_code+1].Len = -1; */ /* guard already set */
- if (nextlen === 0) {
- max_count = 138;
- min_count = 3;
- }
-
- for (n = 0; n <= max_code; n++) {
- curlen = nextlen;
- nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
-
- if (++count < max_count && curlen === nextlen) {
- continue;
-
- } else if (count < min_count) {
- do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
-
- } else if (curlen !== 0) {
- if (curlen !== prevlen) {
- send_code(s, curlen, s.bl_tree);
- count--;
- }
- //Assert(count >= 3 && count <= 6, " 3_6?");
- send_code(s, REP_3_6, s.bl_tree);
- send_bits(s, count - 3, 2);
-
- } else if (count <= 10) {
- send_code(s, REPZ_3_10, s.bl_tree);
- send_bits(s, count - 3, 3);
-
- } else {
- send_code(s, REPZ_11_138, s.bl_tree);
- send_bits(s, count - 11, 7);
- }
-
- count = 0;
- prevlen = curlen;
- if (nextlen === 0) {
- max_count = 138;
- min_count = 3;
-
- } else if (curlen === nextlen) {
- max_count = 6;
- min_count = 3;
-
- } else {
- max_count = 7;
- min_count = 4;
- }
- }
-}
-
-
-/* ===========================================================================
- * Construct the Huffman tree for the bit lengths and return the index in
- * bl_order of the last bit length code to send.
- */
-function build_bl_tree(s) {
- var max_blindex; /* index of last bit length code of non zero freq */
-
- /* Determine the bit length frequencies for literal and distance trees */
- scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
- scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
-
- /* Build the bit length tree: */
- build_tree(s, s.bl_desc);
- /* opt_len now includes the length of the tree representations, except
- * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
- */
-
- /* Determine the number of bit length codes to send. The pkzip format
- * requires that at least 4 bit length codes be sent. (appnote.txt says
- * 3 but the actual value used is 4.)
- */
- for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
- if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
- break;
- }
- }
- /* Update opt_len to include the bit length tree and counts */
- s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
- //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
- // s->opt_len, s->static_len));
-
- return max_blindex;
-}
-
-
-/* ===========================================================================
- * Send the header for a block using dynamic Huffman trees: the counts, the
- * lengths of the bit length codes, the literal tree and the distance tree.
- * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
- */
-function send_all_trees(s, lcodes, dcodes, blcodes)
-// deflate_state *s;
-// int lcodes, dcodes, blcodes; /* number of codes for each tree */
-{
- var rank; /* index in bl_order */
-
- //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
- //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
- // "too many codes");
- //Tracev((stderr, "\nbl counts: "));
- send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
- send_bits(s, dcodes - 1, 5);
- send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
- for (rank = 0; rank < blcodes; rank++) {
- //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
- send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
- }
- //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
-
- send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
- //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
-
- send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
- //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
-}
-
-
-/* ===========================================================================
- * Check if the data type is TEXT or BINARY, using the following algorithm:
- * - TEXT if the two conditions below are satisfied:
- * a) There are no non-portable control characters belonging to the
- * "black list" (0..6, 14..25, 28..31).
- * b) There is at least one printable character belonging to the
- * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
- * - BINARY otherwise.
- * - The following partially-portable control characters form a
- * "gray list" that is ignored in this detection algorithm:
- * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
- * IN assertion: the fields Freq of dyn_ltree are set.
- */
-function detect_data_type(s) {
- /* black_mask is the bit mask of black-listed bytes
- * set bits 0..6, 14..25, and 28..31
- * 0xf3ffc07f = binary 11110011111111111100000001111111
- */
- var black_mask = 0xf3ffc07f;
- var n;
-
- /* Check for non-textual ("black-listed") bytes. */
- for (n = 0; n <= 31; n++, black_mask >>>= 1) {
- if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
- return Z_BINARY;
- }
- }
-
- /* Check for textual ("white-listed") bytes. */
- if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
- s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
- return Z_TEXT;
- }
- for (n = 32; n < LITERALS; n++) {
- if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
- return Z_TEXT;
- }
- }
-
- /* There are no "black-listed" or "white-listed" bytes:
- * this stream either is empty or has tolerated ("gray-listed") bytes only.
- */
- return Z_BINARY;
-}
-
-
-var static_init_done = false;
-
-/* ===========================================================================
- * Initialize the tree data structures for a new zlib stream.
- */
-function _tr_init(s)
-{
-
- if (!static_init_done) {
- tr_static_init();
- static_init_done = true;
- }
-
- s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
- s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
- s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
-
- s.bi_buf = 0;
- s.bi_valid = 0;
-
- /* Initialize the first block of the first file: */
- init_block(s);
-}
-
-
-/* ===========================================================================
- * Send a stored block
- */
-function _tr_stored_block(s, buf, stored_len, last)
-//DeflateState *s;
-//charf *buf; /* input block */
-//ulg stored_len; /* length of input block */
-//int last; /* one if this is the last block for a file */
-{
- send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */
- copy_block(s, buf, stored_len, true); /* with header */
-}
-
-
-/* ===========================================================================
- * Send one empty static block to give enough lookahead for inflate.
- * This takes 10 bits, of which 7 may remain in the bit buffer.
- */
-function _tr_align(s) {
- send_bits(s, STATIC_TREES << 1, 3);
- send_code(s, END_BLOCK, static_ltree);
- bi_flush(s);
-}
-
-
-/* ===========================================================================
- * Determine the best encoding for the current block: dynamic trees, static
- * trees or store, and output the encoded block to the zip file.
- */
-function _tr_flush_block(s, buf, stored_len, last)
-//DeflateState *s;
-//charf *buf; /* input block, or NULL if too old */
-//ulg stored_len; /* length of input block */
-//int last; /* one if this is the last block for a file */
-{
- var opt_lenb, static_lenb; /* opt_len and static_len in bytes */
- var max_blindex = 0; /* index of last bit length code of non zero freq */
-
- /* Build the Huffman trees unless a stored block is forced */
- if (s.level > 0) {
-
- /* Check if the file is binary or text */
- if (s.strm.data_type === Z_UNKNOWN) {
- s.strm.data_type = detect_data_type(s);
- }
-
- /* Construct the literal and distance trees */
- build_tree(s, s.l_desc);
- // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
- // s->static_len));
-
- build_tree(s, s.d_desc);
- // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
- // s->static_len));
- /* At this point, opt_len and static_len are the total bit lengths of
- * the compressed block data, excluding the tree representations.
- */
-
- /* Build the bit length tree for the above two trees, and get the index
- * in bl_order of the last bit length code to send.
- */
- max_blindex = build_bl_tree(s);
-
- /* Determine the best encoding. Compute the block lengths in bytes. */
- opt_lenb = (s.opt_len + 3 + 7) >>> 3;
- static_lenb = (s.static_len + 3 + 7) >>> 3;
-
- // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
- // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
- // s->last_lit));
-
- if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
-
- } else {
- // Assert(buf != (char*)0, "lost buf");
- opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
- }
-
- if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
- /* 4: two words for the lengths */
-
- /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
- * Otherwise we can't have processed more than WSIZE input bytes since
- * the last block flush, because compression would have been
- * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
- * transform a block into a stored block.
- */
- _tr_stored_block(s, buf, stored_len, last);
-
- } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
-
- send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
- compress_block(s, static_ltree, static_dtree);
-
- } else {
- send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
- send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
- compress_block(s, s.dyn_ltree, s.dyn_dtree);
- }
- // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
- /* The above check is made mod 2^32, for files larger than 512 MB
- * and uLong implemented on 32 bits.
- */
- init_block(s);
-
- if (last) {
- bi_windup(s);
- }
- // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
- // s->compressed_len-7*last));
-}
-
-/* ===========================================================================
- * Save the match info and tally the frequency counts. Return true if
- * the current block must be flushed.
- */
-function _tr_tally(s, dist, lc)
-// deflate_state *s;
-// unsigned dist; /* distance of matched string */
-// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
-{
- //var out_length, in_length, dcode;
-
- s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
- s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
-
- s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
- s.last_lit++;
-
- if (dist === 0) {
- /* lc is the unmatched char */
- s.dyn_ltree[lc * 2]/*.Freq*/++;
- } else {
- s.matches++;
- /* Here, lc is the match length - MIN_MATCH */
- dist--; /* dist = match distance - 1 */
- //Assert((ush)dist < (ush)MAX_DIST(s) &&
- // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
- // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
-
- s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
- s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
- }
-
-// (!) This block is disabled in zlib defaults,
-// don't enable it for binary compatibility
-
-//#ifdef TRUNCATE_BLOCK
-// /* Try to guess if it is profitable to stop the current block here */
-// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
-// /* Compute an upper bound for the compressed length */
-// out_length = s.last_lit*8;
-// in_length = s.strstart - s.block_start;
-//
-// for (dcode = 0; dcode < D_CODES; dcode++) {
-// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
-// }
-// out_length >>>= 3;
-// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
-// // s->last_lit, in_length, out_length,
-// // 100L - out_length*100L/in_length));
-// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
-// return true;
-// }
-// }
-//#endif
-
- return (s.last_lit === s.lit_bufsize - 1);
- /* We avoid equality with lit_bufsize because of wraparound at 64K
- * on 16 bit machines and because stored blocks are restricted to
- * 64K-1 bytes.
- */
-}
-
-exports._tr_init = _tr_init;
-exports._tr_stored_block = _tr_stored_block;
-exports._tr_flush_block = _tr_flush_block;
-exports._tr_tally = _tr_tally;
-exports._tr_align = _tr_align;