summaryrefslogtreecommitdiff
path: root/school/node_modules/node-forge/js/rsa.js
diff options
context:
space:
mode:
Diffstat (limited to 'school/node_modules/node-forge/js/rsa.js')
-rw-r--r--school/node_modules/node-forge/js/rsa.js1712
1 files changed, 1712 insertions, 0 deletions
diff --git a/school/node_modules/node-forge/js/rsa.js b/school/node_modules/node-forge/js/rsa.js
new file mode 100644
index 0000000..90f8c0a
--- /dev/null
+++ b/school/node_modules/node-forge/js/rsa.js
@@ -0,0 +1,1712 @@
+/**
+ * Javascript implementation of basic RSA algorithms.
+ *
+ * @author Dave Longley
+ *
+ * Copyright (c) 2010-2014 Digital Bazaar, Inc.
+ *
+ * The only algorithm currently supported for PKI is RSA.
+ *
+ * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
+ * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
+ * and a subjectPublicKey of type bit string.
+ *
+ * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
+ * for the algorithm, if any. In the case of RSA, there aren't any.
+ *
+ * SubjectPublicKeyInfo ::= SEQUENCE {
+ * algorithm AlgorithmIdentifier,
+ * subjectPublicKey BIT STRING
+ * }
+ *
+ * AlgorithmIdentifer ::= SEQUENCE {
+ * algorithm OBJECT IDENTIFIER,
+ * parameters ANY DEFINED BY algorithm OPTIONAL
+ * }
+ *
+ * For an RSA public key, the subjectPublicKey is:
+ *
+ * RSAPublicKey ::= SEQUENCE {
+ * modulus INTEGER, -- n
+ * publicExponent INTEGER -- e
+ * }
+ *
+ * PrivateKeyInfo ::= SEQUENCE {
+ * version Version,
+ * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
+ * privateKey PrivateKey,
+ * attributes [0] IMPLICIT Attributes OPTIONAL
+ * }
+ *
+ * Version ::= INTEGER
+ * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
+ * PrivateKey ::= OCTET STRING
+ * Attributes ::= SET OF Attribute
+ *
+ * An RSA private key as the following structure:
+ *
+ * RSAPrivateKey ::= SEQUENCE {
+ * version Version,
+ * modulus INTEGER, -- n
+ * publicExponent INTEGER, -- e
+ * privateExponent INTEGER, -- d
+ * prime1 INTEGER, -- p
+ * prime2 INTEGER, -- q
+ * exponent1 INTEGER, -- d mod (p-1)
+ * exponent2 INTEGER, -- d mod (q-1)
+ * coefficient INTEGER -- (inverse of q) mod p
+ * }
+ *
+ * Version ::= INTEGER
+ *
+ * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
+ */
+(function() {
+function initModule(forge) {
+/* ########## Begin module implementation ########## */
+
+if(typeof BigInteger === 'undefined') {
+ var BigInteger = forge.jsbn.BigInteger;
+}
+
+// shortcut for asn.1 API
+var asn1 = forge.asn1;
+
+/*
+ * RSA encryption and decryption, see RFC 2313.
+ */
+forge.pki = forge.pki || {};
+forge.pki.rsa = forge.rsa = forge.rsa || {};
+var pki = forge.pki;
+
+// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
+var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
+
+// validator for a PrivateKeyInfo structure
+var privateKeyValidator = {
+ // PrivateKeyInfo
+ name: 'PrivateKeyInfo',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ value: [{
+ // Version (INTEGER)
+ name: 'PrivateKeyInfo.version',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyVersion'
+ }, {
+ // privateKeyAlgorithm
+ name: 'PrivateKeyInfo.privateKeyAlgorithm',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ value: [{
+ name: 'AlgorithmIdentifier.algorithm',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.OID,
+ constructed: false,
+ capture: 'privateKeyOid'
+ }]
+ }, {
+ // PrivateKey
+ name: 'PrivateKeyInfo',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.OCTETSTRING,
+ constructed: false,
+ capture: 'privateKey'
+ }]
+};
+
+// validator for an RSA private key
+var rsaPrivateKeyValidator = {
+ // RSAPrivateKey
+ name: 'RSAPrivateKey',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ value: [{
+ // Version (INTEGER)
+ name: 'RSAPrivateKey.version',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyVersion'
+ }, {
+ // modulus (n)
+ name: 'RSAPrivateKey.modulus',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyModulus'
+ }, {
+ // publicExponent (e)
+ name: 'RSAPrivateKey.publicExponent',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyPublicExponent'
+ }, {
+ // privateExponent (d)
+ name: 'RSAPrivateKey.privateExponent',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyPrivateExponent'
+ }, {
+ // prime1 (p)
+ name: 'RSAPrivateKey.prime1',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyPrime1'
+ }, {
+ // prime2 (q)
+ name: 'RSAPrivateKey.prime2',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyPrime2'
+ }, {
+ // exponent1 (d mod (p-1))
+ name: 'RSAPrivateKey.exponent1',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyExponent1'
+ }, {
+ // exponent2 (d mod (q-1))
+ name: 'RSAPrivateKey.exponent2',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyExponent2'
+ }, {
+ // coefficient ((inverse of q) mod p)
+ name: 'RSAPrivateKey.coefficient',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'privateKeyCoefficient'
+ }]
+};
+
+// validator for an RSA public key
+var rsaPublicKeyValidator = {
+ // RSAPublicKey
+ name: 'RSAPublicKey',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ value: [{
+ // modulus (n)
+ name: 'RSAPublicKey.modulus',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'publicKeyModulus'
+ }, {
+ // publicExponent (e)
+ name: 'RSAPublicKey.exponent',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.INTEGER,
+ constructed: false,
+ capture: 'publicKeyExponent'
+ }]
+};
+
+// validator for an SubjectPublicKeyInfo structure
+// Note: Currently only works with an RSA public key
+var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
+ name: 'SubjectPublicKeyInfo',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ captureAsn1: 'subjectPublicKeyInfo',
+ value: [{
+ name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ value: [{
+ name: 'AlgorithmIdentifier.algorithm',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.OID,
+ constructed: false,
+ capture: 'publicKeyOid'
+ }]
+ }, {
+ // subjectPublicKey
+ name: 'SubjectPublicKeyInfo.subjectPublicKey',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.BITSTRING,
+ constructed: false,
+ value: [{
+ // RSAPublicKey
+ name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
+ tagClass: asn1.Class.UNIVERSAL,
+ type: asn1.Type.SEQUENCE,
+ constructed: true,
+ optional: true,
+ captureAsn1: 'rsaPublicKey'
+ }]
+ }]
+};
+
+/**
+ * Wrap digest in DigestInfo object.
+ *
+ * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
+ *
+ * DigestInfo ::= SEQUENCE {
+ * digestAlgorithm DigestAlgorithmIdentifier,
+ * digest Digest
+ * }
+ *
+ * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
+ * Digest ::= OCTET STRING
+ *
+ * @param md the message digest object with the hash to sign.
+ *
+ * @return the encoded message (ready for RSA encrytion)
+ */
+var emsaPkcs1v15encode = function(md) {
+ // get the oid for the algorithm
+ var oid;
+ if(md.algorithm in pki.oids) {
+ oid = pki.oids[md.algorithm];
+ } else {
+ var error = new Error('Unknown message digest algorithm.');
+ error.algorithm = md.algorithm;
+ throw error;
+ }
+ var oidBytes = asn1.oidToDer(oid).getBytes();
+
+ // create the digest info
+ var digestInfo = asn1.create(
+ asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
+ var digestAlgorithm = asn1.create(
+ asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
+ digestAlgorithm.value.push(asn1.create(
+ asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
+ digestAlgorithm.value.push(asn1.create(
+ asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
+ var digest = asn1.create(
+ asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
+ false, md.digest().getBytes());
+ digestInfo.value.push(digestAlgorithm);
+ digestInfo.value.push(digest);
+
+ // encode digest info
+ return asn1.toDer(digestInfo).getBytes();
+};
+
+/**
+ * Performs x^c mod n (RSA encryption or decryption operation).
+ *
+ * @param x the number to raise and mod.
+ * @param key the key to use.
+ * @param pub true if the key is public, false if private.
+ *
+ * @return the result of x^c mod n.
+ */
+var _modPow = function(x, key, pub) {
+ if(pub) {
+ return x.modPow(key.e, key.n);
+ }
+
+ if(!key.p || !key.q) {
+ // allow calculation without CRT params (slow)
+ return x.modPow(key.d, key.n);
+ }
+
+ // pre-compute dP, dQ, and qInv if necessary
+ if(!key.dP) {
+ key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
+ }
+ if(!key.dQ) {
+ key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
+ }
+ if(!key.qInv) {
+ key.qInv = key.q.modInverse(key.p);
+ }
+
+ /* Chinese remainder theorem (CRT) states:
+
+ Suppose n1, n2, ..., nk are positive integers which are pairwise
+ coprime (n1 and n2 have no common factors other than 1). For any
+ integers x1, x2, ..., xk there exists an integer x solving the
+ system of simultaneous congruences (where ~= means modularly
+ congruent so a ~= b mod n means a mod n = b mod n):
+
+ x ~= x1 mod n1
+ x ~= x2 mod n2
+ ...
+ x ~= xk mod nk
+
+ This system of congruences has a single simultaneous solution x
+ between 0 and n - 1. Furthermore, each xk solution and x itself
+ is congruent modulo the product n = n1*n2*...*nk.
+ So x1 mod n = x2 mod n = xk mod n = x mod n.
+
+ The single simultaneous solution x can be solved with the following
+ equation:
+
+ x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
+
+ Where x is less than n, xi = x mod ni.
+
+ For RSA we are only concerned with k = 2. The modulus n = pq, where
+ p and q are coprime. The RSA decryption algorithm is:
+
+ y = x^d mod n
+
+ Given the above:
+
+ x1 = x^d mod p
+ r1 = n/p = q
+ s1 = q^-1 mod p
+ x2 = x^d mod q
+ r2 = n/q = p
+ s2 = p^-1 mod q
+
+ So y = (x1r1s1 + x2r2s2) mod n
+ = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
+
+ According to Fermat's Little Theorem, if the modulus P is prime,
+ for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
+ Since A is not divisible by P it follows that if:
+ N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
+
+ A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
+ to calculate). In order to calculate x^d mod p more quickly the
+ exponent d mod (p - 1) is stored in the RSA private key (the same
+ is done for x^d mod q). These values are referred to as dP and dQ
+ respectively. Therefore we now have:
+
+ y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
+
+ Since we'll be reducing x^dP by modulo p (same for q) we can also
+ reduce x by p (and q respectively) before hand. Therefore, let
+
+ xp = ((x mod p)^dP mod p), and
+ xq = ((x mod q)^dQ mod q), yielding:
+
+ y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
+
+ This can be further reduced to a simple algorithm that only
+ requires 1 inverse (the q inverse is used) to be used and stored.
+ The algorithm is called Garner's algorithm. If qInv is the
+ inverse of q, we simply calculate:
+
+ y = (qInv*(xp - xq) mod p) * q + xq
+
+ However, there are two further complications. First, we need to
+ ensure that xp > xq to prevent signed BigIntegers from being used
+ so we add p until this is true (since we will be mod'ing with
+ p anyway). Then, there is a known timing attack on algorithms
+ using the CRT. To mitigate this risk, "cryptographic blinding"
+ should be used. This requires simply generating a random number r between
+ 0 and n-1 and its inverse and multiplying x by r^e before calculating y
+ and then multiplying y by r^-1 afterwards.
+ */
+
+ // cryptographic blinding
+ var r;
+ do {
+ r = new BigInteger(
+ forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
+ 16).mod(key.n);
+ } while(r.equals(BigInteger.ZERO));
+ x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
+
+ // calculate xp and xq
+ var xp = x.mod(key.p).modPow(key.dP, key.p);
+ var xq = x.mod(key.q).modPow(key.dQ, key.q);
+
+ // xp must be larger than xq to avoid signed bit usage
+ while(xp.compareTo(xq) < 0) {
+ xp = xp.add(key.p);
+ }
+
+ // do last step
+ var y = xp.subtract(xq)
+ .multiply(key.qInv).mod(key.p)
+ .multiply(key.q).add(xq);
+
+ // remove effect of random for cryptographic blinding
+ y = y.multiply(r.modInverse(key.n)).mod(key.n);
+
+ return y;
+};
+
+/**
+ * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
+ * 'encrypt' on a public key object instead.
+ *
+ * Performs RSA encryption.
+ *
+ * The parameter bt controls whether to put padding bytes before the
+ * message passed in. Set bt to either true or false to disable padding
+ * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
+ * signaling whether the encryption operation is a public key operation
+ * (i.e. encrypting data) or not, i.e. private key operation (data signing).
+ *
+ * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
+ * (for signing) or 0x02 (for encryption). The key operation mode (private
+ * or public) is derived from this flag in that case).
+ *
+ * @param m the message to encrypt as a byte string.
+ * @param key the RSA key to use.
+ * @param bt for PKCS#1 v1.5 padding, the block type to use
+ * (0x01 for private key, 0x02 for public),
+ * to disable padding: true = public key, false = private key.
+ *
+ * @return the encrypted bytes as a string.
+ */
+pki.rsa.encrypt = function(m, key, bt) {
+ var pub = bt;
+ var eb;
+
+ // get the length of the modulus in bytes
+ var k = Math.ceil(key.n.bitLength() / 8);
+
+ if(bt !== false && bt !== true) {
+ // legacy, default to PKCS#1 v1.5 padding
+ pub = (bt === 0x02);
+ eb = _encodePkcs1_v1_5(m, key, bt);
+ } else {
+ eb = forge.util.createBuffer();
+ eb.putBytes(m);
+ }
+
+ // load encryption block as big integer 'x'
+ // FIXME: hex conversion inefficient, get BigInteger w/byte strings
+ var x = new BigInteger(eb.toHex(), 16);
+
+ // do RSA encryption
+ var y = _modPow(x, key, pub);
+
+ // convert y into the encrypted data byte string, if y is shorter in
+ // bytes than k, then prepend zero bytes to fill up ed
+ // FIXME: hex conversion inefficient, get BigInteger w/byte strings
+ var yhex = y.toString(16);
+ var ed = forge.util.createBuffer();
+ var zeros = k - Math.ceil(yhex.length / 2);
+ while(zeros > 0) {
+ ed.putByte(0x00);
+ --zeros;
+ }
+ ed.putBytes(forge.util.hexToBytes(yhex));
+ return ed.getBytes();
+};
+
+/**
+ * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
+ * 'verify' on a public key object instead.
+ *
+ * Performs RSA decryption.
+ *
+ * The parameter ml controls whether to apply PKCS#1 v1.5 padding
+ * or not. Set ml = false to disable padding removal completely
+ * (in order to handle e.g. EMSA-PSS later on) and simply pass back
+ * the RSA encryption block.
+ *
+ * @param ed the encrypted data to decrypt in as a byte string.
+ * @param key the RSA key to use.
+ * @param pub true for a public key operation, false for private.
+ * @param ml the message length, if known, false to disable padding.
+ *
+ * @return the decrypted message as a byte string.
+ */
+pki.rsa.decrypt = function(ed, key, pub, ml) {
+ // get the length of the modulus in bytes
+ var k = Math.ceil(key.n.bitLength() / 8);
+
+ // error if the length of the encrypted data ED is not k
+ if(ed.length !== k) {
+ var error = new Error('Encrypted message length is invalid.');
+ error.length = ed.length;
+ error.expected = k;
+ throw error;
+ }
+
+ // convert encrypted data into a big integer
+ // FIXME: hex conversion inefficient, get BigInteger w/byte strings
+ var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
+
+ // y must be less than the modulus or it wasn't the result of
+ // a previous mod operation (encryption) using that modulus
+ if(y.compareTo(key.n) >= 0) {
+ throw new Error('Encrypted message is invalid.');
+ }
+
+ // do RSA decryption
+ var x = _modPow(y, key, pub);
+
+ // create the encryption block, if x is shorter in bytes than k, then
+ // prepend zero bytes to fill up eb
+ // FIXME: hex conversion inefficient, get BigInteger w/byte strings
+ var xhex = x.toString(16);
+ var eb = forge.util.createBuffer();
+ var zeros = k - Math.ceil(xhex.length / 2);
+ while(zeros > 0) {
+ eb.putByte(0x00);
+ --zeros;
+ }
+ eb.putBytes(forge.util.hexToBytes(xhex));
+
+ if(ml !== false) {
+ // legacy, default to PKCS#1 v1.5 padding
+ return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
+ }
+
+ // return message
+ return eb.getBytes();
+};
+
+/**
+ * Creates an RSA key-pair generation state object. It is used to allow
+ * key-generation to be performed in steps. It also allows for a UI to
+ * display progress updates.
+ *
+ * @param bits the size for the private key in bits, defaults to 2048.
+ * @param e the public exponent to use, defaults to 65537 (0x10001).
+ * @param [options] the options to use.
+ * prng a custom crypto-secure pseudo-random number generator to use,
+ * that must define "getBytesSync".
+ * algorithm the algorithm to use (default: 'PRIMEINC').
+ *
+ * @return the state object to use to generate the key-pair.
+ */
+pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
+ // TODO: migrate step-based prime generation code to forge.prime
+
+ // set default bits
+ if(typeof(bits) === 'string') {
+ bits = parseInt(bits, 10);
+ }
+ bits = bits || 2048;
+
+ // create prng with api that matches BigInteger secure random
+ options = options || {};
+ var prng = options.prng || forge.random;
+ var rng = {
+ // x is an array to fill with bytes
+ nextBytes: function(x) {
+ var b = prng.getBytesSync(x.length);
+ for(var i = 0; i < x.length; ++i) {
+ x[i] = b.charCodeAt(i);
+ }
+ }
+ };
+
+ var algorithm = options.algorithm || 'PRIMEINC';
+
+ // create PRIMEINC algorithm state
+ var rval;
+ if(algorithm === 'PRIMEINC') {
+ rval = {
+ algorithm: algorithm,
+ state: 0,
+ bits: bits,
+ rng: rng,
+ eInt: e || 65537,
+ e: new BigInteger(null),
+ p: null,
+ q: null,
+ qBits: bits >> 1,
+ pBits: bits - (bits >> 1),
+ pqState: 0,
+ num: null,
+ keys: null
+ };
+ rval.e.fromInt(rval.eInt);
+ } else {
+ throw new Error('Invalid key generation algorithm: ' + algorithm);
+ }
+
+ return rval;
+};
+
+/**
+ * Attempts to runs the key-generation algorithm for at most n seconds
+ * (approximately) using the given state. When key-generation has completed,
+ * the keys will be stored in state.keys.
+ *
+ * To use this function to update a UI while generating a key or to prevent
+ * causing browser lockups/warnings, set "n" to a value other than 0. A
+ * simple pattern for generating a key and showing a progress indicator is:
+ *
+ * var state = pki.rsa.createKeyPairGenerationState(2048);
+ * var step = function() {
+ * // step key-generation, run algorithm for 100 ms, repeat
+ * if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
+ * setTimeout(step, 1);
+ * } else {
+ * // key-generation complete
+ * // TODO: turn off progress indicator here
+ * // TODO: use the generated key-pair in "state.keys"
+ * }
+ * };
+ * // TODO: turn on progress indicator here
+ * setTimeout(step, 0);
+ *
+ * @param state the state to use.
+ * @param n the maximum number of milliseconds to run the algorithm for, 0
+ * to run the algorithm to completion.
+ *
+ * @return true if the key-generation completed, false if not.
+ */
+pki.rsa.stepKeyPairGenerationState = function(state, n) {
+ // set default algorithm if not set
+ if(!('algorithm' in state)) {
+ state.algorithm = 'PRIMEINC';
+ }
+
+ // TODO: migrate step-based prime generation code to forge.prime
+ // TODO: abstract as PRIMEINC algorithm
+
+ // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
+ // with some minor optimizations and designed to run in steps
+
+ // local state vars
+ var THIRTY = new BigInteger(null);
+ THIRTY.fromInt(30);
+ var deltaIdx = 0;
+ var op_or = function(x,y) { return x|y; };
+
+ // keep stepping until time limit is reached or done
+ var t1 = +new Date();
+ var t2;
+ var total = 0;
+ while(state.keys === null && (n <= 0 || total < n)) {
+ // generate p or q
+ if(state.state === 0) {
+ /* Note: All primes are of the form:
+
+ 30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
+
+ When we generate a random number, we always align it at 30k + 1. Each
+ time the number is determined not to be prime we add to get to the
+ next 'i', eg: if the number was at 30k + 1 we add 6. */
+ var bits = (state.p === null) ? state.pBits : state.qBits;
+ var bits1 = bits - 1;
+
+ // get a random number
+ if(state.pqState === 0) {
+ state.num = new BigInteger(bits, state.rng);
+ // force MSB set
+ if(!state.num.testBit(bits1)) {
+ state.num.bitwiseTo(
+ BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
+ }
+ // align number on 30k+1 boundary
+ state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
+ deltaIdx = 0;
+
+ ++state.pqState;
+ } else if(state.pqState === 1) {
+ // try to make the number a prime
+ if(state.num.bitLength() > bits) {
+ // overflow, try again
+ state.pqState = 0;
+ // do primality test
+ } else if(state.num.isProbablePrime(
+ _getMillerRabinTests(state.num.bitLength()))) {
+ ++state.pqState;
+ } else {
+ // get next potential prime
+ state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
+ }
+ } else if(state.pqState === 2) {
+ // ensure number is coprime with e
+ state.pqState =
+ (state.num.subtract(BigInteger.ONE).gcd(state.e)
+ .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
+ } else if(state.pqState === 3) {
+ // store p or q
+ state.pqState = 0;
+ if(state.p === null) {
+ state.p = state.num;
+ } else {
+ state.q = state.num;
+ }
+
+ // advance state if both p and q are ready
+ if(state.p !== null && state.q !== null) {
+ ++state.state;
+ }
+ state.num = null;
+ }
+ } else if(state.state === 1) {
+ // ensure p is larger than q (swap them if not)
+ if(state.p.compareTo(state.q) < 0) {
+ state.num = state.p;
+ state.p = state.q;
+ state.q = state.num;
+ }
+ ++state.state;
+ } else if(state.state === 2) {
+ // compute phi: (p - 1)(q - 1) (Euler's totient function)
+ state.p1 = state.p.subtract(BigInteger.ONE);
+ state.q1 = state.q.subtract(BigInteger.ONE);
+ state.phi = state.p1.multiply(state.q1);
+ ++state.state;
+ } else if(state.state === 3) {
+ // ensure e and phi are coprime
+ if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
+ // phi and e are coprime, advance
+ ++state.state;
+ } else {
+ // phi and e aren't coprime, so generate a new p and q
+ state.p = null;
+ state.q = null;
+ state.state = 0;
+ }
+ } else if(state.state === 4) {
+ // create n, ensure n is has the right number of bits
+ state.n = state.p.multiply(state.q);
+
+ // ensure n is right number of bits
+ if(state.n.bitLength() === state.bits) {
+ // success, advance
+ ++state.state;
+ } else {
+ // failed, get new q
+ state.q = null;
+ state.state = 0;
+ }
+ } else if(state.state === 5) {
+ // set keys
+ var d = state.e.modInverse(state.phi);
+ state.keys = {
+ privateKey: pki.rsa.setPrivateKey(
+ state.n, state.e, d, state.p, state.q,
+ d.mod(state.p1), d.mod(state.q1),
+ state.q.modInverse(state.p)),
+ publicKey: pki.rsa.setPublicKey(state.n, state.e)
+ };
+ }
+
+ // update timing
+ t2 = +new Date();
+ total += t2 - t1;
+ t1 = t2;
+ }
+
+ return state.keys !== null;
+};
+
+/**
+ * Generates an RSA public-private key pair in a single call.
+ *
+ * To generate a key-pair in steps (to allow for progress updates and to
+ * prevent blocking or warnings in slow browsers) then use the key-pair
+ * generation state functions.
+ *
+ * To generate a key-pair asynchronously (either through web-workers, if
+ * available, or by breaking up the work on the main thread), pass a
+ * callback function.
+ *
+ * @param [bits] the size for the private key in bits, defaults to 2048.
+ * @param [e] the public exponent to use, defaults to 65537.
+ * @param [options] options for key-pair generation, if given then 'bits'
+ * and 'e' must *not* be given:
+ * bits the size for the private key in bits, (default: 2048).
+ * e the public exponent to use, (default: 65537 (0x10001)).
+ * workerScript the worker script URL.
+ * workers the number of web workers (if supported) to use,
+ * (default: 2).
+ * workLoad the size of the work load, ie: number of possible prime
+ * numbers for each web worker to check per work assignment,
+ * (default: 100).
+ * e the public exponent to use, defaults to 65537.
+ * prng a custom crypto-secure pseudo-random number generator to use,
+ * that must define "getBytesSync".
+ * algorithm the algorithm to use (default: 'PRIMEINC').
+ * @param [callback(err, keypair)] called once the operation completes.
+ *
+ * @return an object with privateKey and publicKey properties.
+ */
+pki.rsa.generateKeyPair = function(bits, e, options, callback) {
+ // (bits), (options), (callback)
+ if(arguments.length === 1) {
+ if(typeof bits === 'object') {
+ options = bits;
+ bits = undefined;
+ } else if(typeof bits === 'function') {
+ callback = bits;
+ bits = undefined;
+ }
+ } else if(arguments.length === 2) {
+ // (bits, e), (bits, options), (bits, callback), (options, callback)
+ if(typeof bits === 'number') {
+ if(typeof e === 'function') {
+ callback = e;
+ e = undefined;
+ } else if(typeof e !== 'number') {
+ options = e;
+ e = undefined;
+ }
+ } else {
+ options = bits;
+ callback = e;
+ bits = undefined;
+ e = undefined;
+ }
+ } else if(arguments.length === 3) {
+ // (bits, e, options), (bits, e, callback), (bits, options, callback)
+ if(typeof e === 'number') {
+ if(typeof options === 'function') {
+ callback = options;
+ options = undefined;
+ }
+ } else {
+ callback = options;
+ options = e;
+ e = undefined;
+ }
+ }
+ options = options || {};
+ if(bits === undefined) {
+ bits = options.bits || 2048;
+ }
+ if(e === undefined) {
+ e = options.e || 0x10001;
+ }
+ var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
+ if(!callback) {
+ pki.rsa.stepKeyPairGenerationState(state, 0);
+ return state.keys;
+ }
+ _generateKeyPair(state, options, callback);
+};
+
+/**
+ * Sets an RSA public key from BigIntegers modulus and exponent.
+ *
+ * @param n the modulus.
+ * @param e the exponent.
+ *
+ * @return the public key.
+ */
+pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
+ var key = {
+ n: n,
+ e: e
+ };
+
+ /**
+ * Encrypts the given data with this public key. Newer applications
+ * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
+ * legacy applications.
+ *
+ * @param data the byte string to encrypt.
+ * @param scheme the encryption scheme to use:
+ * 'RSAES-PKCS1-V1_5' (default),
+ * 'RSA-OAEP',
+ * 'RAW', 'NONE', or null to perform raw RSA encryption,
+ * an object with an 'encode' property set to a function
+ * with the signature 'function(data, key)' that returns
+ * a binary-encoded string representing the encoded data.
+ * @param schemeOptions any scheme-specific options.
+ *
+ * @return the encrypted byte string.
+ */
+ key.encrypt = function(data, scheme, schemeOptions) {
+ if(typeof scheme === 'string') {
+ scheme = scheme.toUpperCase();
+ } else if(scheme === undefined) {
+ scheme = 'RSAES-PKCS1-V1_5';
+ }
+
+ if(scheme === 'RSAES-PKCS1-V1_5') {
+ scheme = {
+ encode: function(m, key, pub) {
+ return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
+ }
+ };
+ } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
+ scheme = {
+ encode: function(m, key) {
+ return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
+ }
+ };
+ } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
+ scheme = { encode: function(e) { return e; } };
+ } else if(typeof scheme === 'string') {
+ throw new Error('Unsupported encryption scheme: "' + scheme + '".');
+ }
+
+ // do scheme-based encoding then rsa encryption
+ var e = scheme.encode(data, key, true);
+ return pki.rsa.encrypt(e, key, true);
+ };
+
+ /**
+ * Verifies the given signature against the given digest.
+ *
+ * PKCS#1 supports multiple (currently two) signature schemes:
+ * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
+ *
+ * By default this implementation uses the "old scheme", i.e.
+ * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
+ * signature is an OCTET STRING that holds a DigestInfo.
+ *
+ * DigestInfo ::= SEQUENCE {
+ * digestAlgorithm DigestAlgorithmIdentifier,
+ * digest Digest
+ * }
+ * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
+ * Digest ::= OCTET STRING
+ *
+ * To perform PSS signature verification, provide an instance
+ * of Forge PSS object as the scheme parameter.
+ *
+ * @param digest the message digest hash to compare against the signature,
+ * as a binary-encoded string.
+ * @param signature the signature to verify, as a binary-encoded string.
+ * @param scheme signature verification scheme to use:
+ * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
+ * a Forge PSS object for RSASSA-PSS,
+ * 'NONE' or null for none, DigestInfo will not be expected, but
+ * PKCS#1 v1.5 padding will still be used.
+ *
+ * @return true if the signature was verified, false if not.
+ */
+ key.verify = function(digest, signature, scheme) {
+ if(typeof scheme === 'string') {
+ scheme = scheme.toUpperCase();
+ } else if(scheme === undefined) {
+ scheme = 'RSASSA-PKCS1-V1_5';
+ }
+
+ if(scheme === 'RSASSA-PKCS1-V1_5') {
+ scheme = {
+ verify: function(digest, d) {
+ // remove padding
+ d = _decodePkcs1_v1_5(d, key, true);
+ // d is ASN.1 BER-encoded DigestInfo
+ var obj = asn1.fromDer(d);
+ // compare the given digest to the decrypted one
+ return digest === obj.value[1].value;
+ }
+ };
+ } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
+ scheme = {
+ verify: function(digest, d) {
+ // remove padding
+ d = _decodePkcs1_v1_5(d, key, true);
+ return digest === d;
+ }
+ };
+ }
+
+ // do rsa decryption w/o any decoding, then verify -- which does decoding
+ var d = pki.rsa.decrypt(signature, key, true, false);
+ return scheme.verify(digest, d, key.n.bitLength());
+ };
+
+ return key;
+};
+
+/**
+ * Sets an RSA private key from BigIntegers modulus, exponent, primes,
+ * prime exponents, and modular multiplicative inverse.
+ *
+ * @param n the modulus.
+ * @param e the public exponent.
+ * @param d the private exponent ((inverse of e) mod n).
+ * @param p the first prime.
+ * @param q the second prime.
+ * @param dP exponent1 (d mod (p-1)).
+ * @param dQ exponent2 (d mod (q-1)).
+ * @param qInv ((inverse of q) mod p)
+ *
+ * @return the private key.
+ */
+pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
+ n, e, d, p, q, dP, dQ, qInv) {
+ var key = {
+ n: n,
+ e: e,
+ d: d,
+ p: p,
+ q: q,
+ dP: dP,
+ dQ: dQ,
+ qInv: qInv
+ };
+
+ /**
+ * Decrypts the given data with this private key. The decryption scheme
+ * must match the one used to encrypt the data.
+ *
+ * @param data the byte string to decrypt.
+ * @param scheme the decryption scheme to use:
+ * 'RSAES-PKCS1-V1_5' (default),
+ * 'RSA-OAEP',
+ * 'RAW', 'NONE', or null to perform raw RSA decryption.
+ * @param schemeOptions any scheme-specific options.
+ *
+ * @return the decrypted byte string.
+ */
+ key.decrypt = function(data, scheme, schemeOptions) {
+ if(typeof scheme === 'string') {
+ scheme = scheme.toUpperCase();
+ } else if(scheme === undefined) {
+ scheme = 'RSAES-PKCS1-V1_5';
+ }
+
+ // do rsa decryption w/o any decoding
+ var d = pki.rsa.decrypt(data, key, false, false);
+
+ if(scheme === 'RSAES-PKCS1-V1_5') {
+ scheme = { decode: _decodePkcs1_v1_5 };
+ } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
+ scheme = {
+ decode: function(d, key) {
+ return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
+ }
+ };
+ } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
+ scheme = { decode: function(d) { return d; } };
+ } else {
+ throw new Error('Unsupported encryption scheme: "' + scheme + '".');
+ }
+
+ // decode according to scheme
+ return scheme.decode(d, key, false);
+ };
+
+ /**
+ * Signs the given digest, producing a signature.
+ *
+ * PKCS#1 supports multiple (currently two) signature schemes:
+ * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
+ *
+ * By default this implementation uses the "old scheme", i.e.
+ * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
+ * an instance of Forge PSS object as the scheme parameter.
+ *
+ * @param md the message digest object with the hash to sign.
+ * @param scheme the signature scheme to use:
+ * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
+ * a Forge PSS object for RSASSA-PSS,
+ * 'NONE' or null for none, DigestInfo will not be used but
+ * PKCS#1 v1.5 padding will still be used.
+ *
+ * @return the signature as a byte string.
+ */
+ key.sign = function(md, scheme) {
+ /* Note: The internal implementation of RSA operations is being
+ transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
+ code like the use of an encoding block identifier 'bt' will eventually
+ be removed. */
+
+ // private key operation
+ var bt = false;
+
+ if(typeof scheme === 'string') {
+ scheme = scheme.toUpperCase();
+ }
+
+ if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
+ scheme = { encode: emsaPkcs1v15encode };
+ bt = 0x01;
+ } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
+ scheme = { encode: function() { return md; } };
+ bt = 0x01;
+ }
+
+ // encode and then encrypt
+ var d = scheme.encode(md, key.n.bitLength());
+ return pki.rsa.encrypt(d, key, bt);
+ };
+
+ return key;
+};
+
+/**
+ * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
+ *
+ * @param rsaKey the ASN.1 RSAPrivateKey.
+ *
+ * @return the ASN.1 PrivateKeyInfo.
+ */
+pki.wrapRsaPrivateKey = function(rsaKey) {
+ // PrivateKeyInfo
+ return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
+ // version (0)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ asn1.integerToDer(0).getBytes()),
+ // privateKeyAlgorithm
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
+ asn1.create(
+ asn1.Class.UNIVERSAL, asn1.Type.OID, false,
+ asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
+ ]),
+ // PrivateKey
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
+ asn1.toDer(rsaKey).getBytes())
+ ]);
+};
+
+/**
+ * Converts a private key from an ASN.1 object.
+ *
+ * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
+ * RSAPrivateKey or an RSAPrivateKey.
+ *
+ * @return the private key.
+ */
+pki.privateKeyFromAsn1 = function(obj) {
+ // get PrivateKeyInfo
+ var capture = {};
+ var errors = [];
+ if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
+ obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
+ }
+
+ // get RSAPrivateKey
+ capture = {};
+ errors = [];
+ if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
+ var error = new Error('Cannot read private key. ' +
+ 'ASN.1 object does not contain an RSAPrivateKey.');
+ error.errors = errors;
+ throw error;
+ }
+
+ // Note: Version is currently ignored.
+ // capture.privateKeyVersion
+ // FIXME: inefficient, get a BigInteger that uses byte strings
+ var n, e, d, p, q, dP, dQ, qInv;
+ n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
+ e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
+ d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
+ p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
+ q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
+ dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
+ dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
+ qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();
+
+ // set private key
+ return pki.setRsaPrivateKey(
+ new BigInteger(n, 16),
+ new BigInteger(e, 16),
+ new BigInteger(d, 16),
+ new BigInteger(p, 16),
+ new BigInteger(q, 16),
+ new BigInteger(dP, 16),
+ new BigInteger(dQ, 16),
+ new BigInteger(qInv, 16));
+};
+
+/**
+ * Converts a private key to an ASN.1 RSAPrivateKey.
+ *
+ * @param key the private key.
+ *
+ * @return the ASN.1 representation of an RSAPrivateKey.
+ */
+pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
+ // RSAPrivateKey
+ return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
+ // version (0 = only 2 primes, 1 multiple primes)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ asn1.integerToDer(0).getBytes()),
+ // modulus (n)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.n)),
+ // publicExponent (e)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.e)),
+ // privateExponent (d)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.d)),
+ // privateKeyPrime1 (p)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.p)),
+ // privateKeyPrime2 (q)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.q)),
+ // privateKeyExponent1 (dP)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.dP)),
+ // privateKeyExponent2 (dQ)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.dQ)),
+ // coefficient (qInv)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.qInv))
+ ]);
+};
+
+/**
+ * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
+ *
+ * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
+ *
+ * @return the public key.
+ */
+pki.publicKeyFromAsn1 = function(obj) {
+ // get SubjectPublicKeyInfo
+ var capture = {};
+ var errors = [];
+ if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
+ // get oid
+ var oid = asn1.derToOid(capture.publicKeyOid);
+ if(oid !== pki.oids.rsaEncryption) {
+ var error = new Error('Cannot read public key. Unknown OID.');
+ error.oid = oid;
+ throw error;
+ }
+ obj = capture.rsaPublicKey;
+ }
+
+ // get RSA params
+ errors = [];
+ if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
+ var error = new Error('Cannot read public key. ' +
+ 'ASN.1 object does not contain an RSAPublicKey.');
+ error.errors = errors;
+ throw error;
+ }
+
+ // FIXME: inefficient, get a BigInteger that uses byte strings
+ var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
+ var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();
+
+ // set public key
+ return pki.setRsaPublicKey(
+ new BigInteger(n, 16),
+ new BigInteger(e, 16));
+};
+
+/**
+ * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
+ *
+ * @param key the public key.
+ *
+ * @return the asn1 representation of a SubjectPublicKeyInfo.
+ */
+pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
+ // SubjectPublicKeyInfo
+ return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
+ // AlgorithmIdentifier
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
+ // algorithm
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
+ asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
+ // parameters (null)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
+ ]),
+ // subjectPublicKey
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
+ pki.publicKeyToRSAPublicKey(key)
+ ])
+ ]);
+};
+
+/**
+ * Converts a public key to an ASN.1 RSAPublicKey.
+ *
+ * @param key the public key.
+ *
+ * @return the asn1 representation of a RSAPublicKey.
+ */
+pki.publicKeyToRSAPublicKey = function(key) {
+ // RSAPublicKey
+ return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
+ // modulus (n)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.n)),
+ // publicExponent (e)
+ asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
+ _bnToBytes(key.e))
+ ]);
+};
+
+/**
+ * Encodes a message using PKCS#1 v1.5 padding.
+ *
+ * @param m the message to encode.
+ * @param key the RSA key to use.
+ * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
+ * (for encryption).
+ *
+ * @return the padded byte buffer.
+ */
+function _encodePkcs1_v1_5(m, key, bt) {
+ var eb = forge.util.createBuffer();
+
+ // get the length of the modulus in bytes
+ var k = Math.ceil(key.n.bitLength() / 8);
+
+ /* use PKCS#1 v1.5 padding */
+ if(m.length > (k - 11)) {
+ var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
+ error.length = m.length;
+ error.max = k - 11;
+ throw error;
+ }
+
+ /* A block type BT, a padding string PS, and the data D shall be
+ formatted into an octet string EB, the encryption block:
+
+ EB = 00 || BT || PS || 00 || D
+
+ The block type BT shall be a single octet indicating the structure of
+ the encryption block. For this version of the document it shall have
+ value 00, 01, or 02. For a private-key operation, the block type
+ shall be 00 or 01. For a public-key operation, it shall be 02.
+
+ The padding string PS shall consist of k-3-||D|| octets. For block
+ type 00, the octets shall have value 00; for block type 01, they
+ shall have value FF; and for block type 02, they shall be
+ pseudorandomly generated and nonzero. This makes the length of the
+ encryption block EB equal to k. */
+
+ // build the encryption block
+ eb.putByte(0x00);
+ eb.putByte(bt);
+
+ // create the padding
+ var padNum = k - 3 - m.length;
+ var padByte;
+ // private key op
+ if(bt === 0x00 || bt === 0x01) {
+ padByte = (bt === 0x00) ? 0x00 : 0xFF;
+ for(var i = 0; i < padNum; ++i) {
+ eb.putByte(padByte);
+ }
+ } else {
+ // public key op
+ // pad with random non-zero values
+ while(padNum > 0) {
+ var numZeros = 0;
+ var padBytes = forge.random.getBytes(padNum);
+ for(var i = 0; i < padNum; ++i) {
+ padByte = padBytes.charCodeAt(i);
+ if(padByte === 0) {
+ ++numZeros;
+ } else {
+ eb.putByte(padByte);
+ }
+ }
+ padNum = numZeros;
+ }
+ }
+
+ // zero followed by message
+ eb.putByte(0x00);
+ eb.putBytes(m);
+
+ return eb;
+}
+
+/**
+ * Decodes a message using PKCS#1 v1.5 padding.
+ *
+ * @param em the message to decode.
+ * @param key the RSA key to use.
+ * @param pub true if the key is a public key, false if it is private.
+ * @param ml the message length, if specified.
+ *
+ * @return the decoded bytes.
+ */
+function _decodePkcs1_v1_5(em, key, pub, ml) {
+ // get the length of the modulus in bytes
+ var k = Math.ceil(key.n.bitLength() / 8);
+
+ /* It is an error if any of the following conditions occurs:
+
+ 1. The encryption block EB cannot be parsed unambiguously.
+ 2. The padding string PS consists of fewer than eight octets
+ or is inconsisent with the block type BT.
+ 3. The decryption process is a public-key operation and the block
+ type BT is not 00 or 01, or the decryption process is a
+ private-key operation and the block type is not 02.
+ */
+
+ // parse the encryption block
+ var eb = forge.util.createBuffer(em);
+ var first = eb.getByte();
+ var bt = eb.getByte();
+ if(first !== 0x00 ||
+ (pub && bt !== 0x00 && bt !== 0x01) ||
+ (!pub && bt != 0x02) ||
+ (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
+ throw new Error('Encryption block is invalid.');
+ }
+
+ var padNum = 0;
+ if(bt === 0x00) {
+ // check all padding bytes for 0x00
+ padNum = k - 3 - ml;
+ for(var i = 0; i < padNum; ++i) {
+ if(eb.getByte() !== 0x00) {
+ throw new Error('Encryption block is invalid.');
+ }
+ }
+ } else if(bt === 0x01) {
+ // find the first byte that isn't 0xFF, should be after all padding
+ padNum = 0;
+ while(eb.length() > 1) {
+ if(eb.getByte() !== 0xFF) {
+ --eb.read;
+ break;
+ }
+ ++padNum;
+ }
+ } else if(bt === 0x02) {
+ // look for 0x00 byte
+ padNum = 0;
+ while(eb.length() > 1) {
+ if(eb.getByte() === 0x00) {
+ --eb.read;
+ break;
+ }
+ ++padNum;
+ }
+ }
+
+ // zero must be 0x00 and padNum must be (k - 3 - message length)
+ var zero = eb.getByte();
+ if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
+ throw new Error('Encryption block is invalid.');
+ }
+
+ return eb.getBytes();
+}
+
+/**
+ * Runs the key-generation algorithm asynchronously, either in the background
+ * via Web Workers, or using the main thread and setImmediate.
+ *
+ * @param state the key-pair generation state.
+ * @param [options] options for key-pair generation:
+ * workerScript the worker script URL.
+ * workers the number of web workers (if supported) to use,
+ * (default: 2, -1 to use estimated cores minus one).
+ * workLoad the size of the work load, ie: number of possible prime
+ * numbers for each web worker to check per work assignment,
+ * (default: 100).
+ * @param callback(err, keypair) called once the operation completes.
+ */
+function _generateKeyPair(state, options, callback) {
+ if(typeof options === 'function') {
+ callback = options;
+ options = {};
+ }
+ options = options || {};
+
+ var opts = {
+ algorithm: {
+ name: options.algorithm || 'PRIMEINC',
+ options: {
+ workers: options.workers || 2,
+ workLoad: options.workLoad || 100,
+ workerScript: options.workerScript
+ }
+ }
+ };
+ if('prng' in options) {
+ opts.prng = options.prng;
+ }
+
+ generate();
+
+ function generate() {
+ // find p and then q (done in series to simplify)
+ getPrime(state.pBits, function(err, num) {
+ if(err) {
+ return callback(err);
+ }
+ state.p = num;
+ if(state.q !== null) {
+ return finish(err, state.q);
+ }
+ getPrime(state.qBits, finish);
+ });
+ }
+
+ function getPrime(bits, callback) {
+ forge.prime.generateProbablePrime(bits, opts, callback);
+ }
+
+ function finish(err, num) {
+ if(err) {
+ return callback(err);
+ }
+
+ // set q
+ state.q = num;
+
+ // ensure p is larger than q (swap them if not)
+ if(state.p.compareTo(state.q) < 0) {
+ var tmp = state.p;
+ state.p = state.q;
+ state.q = tmp;
+ }
+
+ // ensure p is coprime with e
+ if(state.p.subtract(BigInteger.ONE).gcd(state.e)
+ .compareTo(BigInteger.ONE) !== 0) {
+ state.p = null;
+ generate();
+ return;
+ }
+
+ // ensure q is coprime with e
+ if(state.q.subtract(BigInteger.ONE).gcd(state.e)
+ .compareTo(BigInteger.ONE) !== 0) {
+ state.q = null;
+ getPrime(state.qBits, finish);
+ return;
+ }
+
+ // compute phi: (p - 1)(q - 1) (Euler's totient function)
+ state.p1 = state.p.subtract(BigInteger.ONE);
+ state.q1 = state.q.subtract(BigInteger.ONE);
+ state.phi = state.p1.multiply(state.q1);
+
+ // ensure e and phi are coprime
+ if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
+ // phi and e aren't coprime, so generate a new p and q
+ state.p = state.q = null;
+ generate();
+ return;
+ }
+
+ // create n, ensure n is has the right number of bits
+ state.n = state.p.multiply(state.q);
+ if(state.n.bitLength() !== state.bits) {
+ // failed, get new q
+ state.q = null;
+ getPrime(state.qBits, finish);
+ return;
+ }
+
+ // set keys
+ var d = state.e.modInverse(state.phi);
+ state.keys = {
+ privateKey: pki.rsa.setPrivateKey(
+ state.n, state.e, d, state.p, state.q,
+ d.mod(state.p1), d.mod(state.q1),
+ state.q.modInverse(state.p)),
+ publicKey: pki.rsa.setPublicKey(state.n, state.e)
+ };
+
+ callback(null, state.keys);
+ }
+}
+
+/**
+ * Converts a positive BigInteger into 2's-complement big-endian bytes.
+ *
+ * @param b the big integer to convert.
+ *
+ * @return the bytes.
+ */
+function _bnToBytes(b) {
+ // prepend 0x00 if first byte >= 0x80
+ var hex = b.toString(16);
+ if(hex[0] >= '8') {
+ hex = '00' + hex;
+ }
+ return forge.util.hexToBytes(hex);
+}
+
+/**
+ * Returns the required number of Miller-Rabin tests to generate a
+ * prime with an error probability of (1/2)^80.
+ *
+ * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
+ *
+ * @param bits the bit size.
+ *
+ * @return the required number of iterations.
+ */
+function _getMillerRabinTests(bits) {
+ if(bits <= 100) return 27;
+ if(bits <= 150) return 18;
+ if(bits <= 200) return 15;
+ if(bits <= 250) return 12;
+ if(bits <= 300) return 9;
+ if(bits <= 350) return 8;
+ if(bits <= 400) return 7;
+ if(bits <= 500) return 6;
+ if(bits <= 600) return 5;
+ if(bits <= 800) return 4;
+ if(bits <= 1250) return 3;
+ return 2;
+}
+
+} // end module implementation
+
+/* ########## Begin module wrapper ########## */
+var name = 'rsa';
+if(typeof define !== 'function') {
+ // NodeJS -> AMD
+ if(typeof module === 'object' && module.exports) {
+ var nodeJS = true;
+ define = function(ids, factory) {
+ factory(require, module);
+ };
+ } else {
+ // <script>
+ if(typeof forge === 'undefined') {
+ forge = {};
+ }
+ return initModule(forge);
+ }
+}
+// AMD
+var deps;
+var defineFunc = function(require, module) {
+ module.exports = function(forge) {
+ var mods = deps.map(function(dep) {
+ return require(dep);
+ }).concat(initModule);
+ // handle circular dependencies
+ forge = forge || {};
+ forge.defined = forge.defined || {};
+ if(forge.defined[name]) {
+ return forge[name];
+ }
+ forge.defined[name] = true;
+ for(var i = 0; i < mods.length; ++i) {
+ mods[i](forge);
+ }
+ return forge[name];
+ };
+};
+var tmpDefine = define;
+define = function(ids, factory) {
+ deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
+ if(nodeJS) {
+ delete define;
+ return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
+ }
+ define = tmpDefine;
+ return define.apply(null, Array.prototype.slice.call(arguments, 0));
+};
+define([
+ 'require',
+ 'module',
+ './asn1',
+ './jsbn',
+ './oids',
+ './pkcs1',
+ './prime',
+ './random',
+ './util'
+], function() {
+ defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
+});
+})();