summaryrefslogtreecommitdiff
path: root/school/node_modules/node-forge/js/cipherModes.js
diff options
context:
space:
mode:
Diffstat (limited to 'school/node_modules/node-forge/js/cipherModes.js')
-rw-r--r--school/node_modules/node-forge/js/cipherModes.js1049
1 files changed, 1049 insertions, 0 deletions
diff --git a/school/node_modules/node-forge/js/cipherModes.js b/school/node_modules/node-forge/js/cipherModes.js
new file mode 100644
index 0000000..2d64211
--- /dev/null
+++ b/school/node_modules/node-forge/js/cipherModes.js
@@ -0,0 +1,1049 @@
+/**
+ * Supported cipher modes.
+ *
+ * @author Dave Longley
+ *
+ * Copyright (c) 2010-2014 Digital Bazaar, Inc.
+ */
+(function() {
+/* ########## Begin module implementation ########## */
+function initModule(forge) {
+
+forge.cipher = forge.cipher || {};
+
+// supported cipher modes
+var modes = forge.cipher.modes = forge.cipher.modes || {};
+
+
+/** Electronic codebook (ECB) (Don't use this; it's not secure) **/
+
+modes.ecb = function(options) {
+ options = options || {};
+ this.name = 'ECB';
+ this.cipher = options.cipher;
+ this.blockSize = options.blockSize || 16;
+ this._ints = this.blockSize / 4;
+ this._inBlock = new Array(this._ints);
+ this._outBlock = new Array(this._ints);
+};
+
+modes.ecb.prototype.start = function(options) {};
+
+modes.ecb.prototype.encrypt = function(input, output, finish) {
+ // not enough input to encrypt
+ if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
+ return true;
+ }
+
+ // get next block
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = input.getInt32();
+ }
+
+ // encrypt block
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // write output
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(this._outBlock[i]);
+ }
+};
+
+modes.ecb.prototype.decrypt = function(input, output, finish) {
+ // not enough input to decrypt
+ if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
+ return true;
+ }
+
+ // get next block
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = input.getInt32();
+ }
+
+ // decrypt block
+ this.cipher.decrypt(this._inBlock, this._outBlock);
+
+ // write output
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(this._outBlock[i]);
+ }
+};
+
+modes.ecb.prototype.pad = function(input, options) {
+ // add PKCS#7 padding to block (each pad byte is the
+ // value of the number of pad bytes)
+ var padding = (input.length() === this.blockSize ?
+ this.blockSize : (this.blockSize - input.length()));
+ input.fillWithByte(padding, padding);
+ return true;
+};
+
+modes.ecb.prototype.unpad = function(output, options) {
+ // check for error: input data not a multiple of blockSize
+ if(options.overflow > 0) {
+ return false;
+ }
+
+ // ensure padding byte count is valid
+ var len = output.length();
+ var count = output.at(len - 1);
+ if(count > (this.blockSize << 2)) {
+ return false;
+ }
+
+ // trim off padding bytes
+ output.truncate(count);
+ return true;
+};
+
+
+/** Cipher-block Chaining (CBC) **/
+
+modes.cbc = function(options) {
+ options = options || {};
+ this.name = 'CBC';
+ this.cipher = options.cipher;
+ this.blockSize = options.blockSize || 16;
+ this._ints = this.blockSize / 4;
+ this._inBlock = new Array(this._ints);
+ this._outBlock = new Array(this._ints);
+};
+
+modes.cbc.prototype.start = function(options) {
+ // Note: legacy support for using IV residue (has security flaws)
+ // if IV is null, reuse block from previous processing
+ if(options.iv === null) {
+ // must have a previous block
+ if(!this._prev) {
+ throw new Error('Invalid IV parameter.');
+ }
+ this._iv = this._prev.slice(0);
+ } else if(!('iv' in options)) {
+ throw new Error('Invalid IV parameter.');
+ } else {
+ // save IV as "previous" block
+ this._iv = transformIV(options.iv);
+ this._prev = this._iv.slice(0);
+ }
+};
+
+modes.cbc.prototype.encrypt = function(input, output, finish) {
+ // not enough input to encrypt
+ if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
+ return true;
+ }
+
+ // get next block
+ // CBC XOR's IV (or previous block) with plaintext
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = this._prev[i] ^ input.getInt32();
+ }
+
+ // encrypt block
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // write output, save previous block
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(this._outBlock[i]);
+ }
+ this._prev = this._outBlock;
+};
+
+modes.cbc.prototype.decrypt = function(input, output, finish) {
+ // not enough input to decrypt
+ if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
+ return true;
+ }
+
+ // get next block
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = input.getInt32();
+ }
+
+ // decrypt block
+ this.cipher.decrypt(this._inBlock, this._outBlock);
+
+ // write output, save previous ciphered block
+ // CBC XOR's IV (or previous block) with ciphertext
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(this._prev[i] ^ this._outBlock[i]);
+ }
+ this._prev = this._inBlock.slice(0);
+};
+
+modes.cbc.prototype.pad = function(input, options) {
+ // add PKCS#7 padding to block (each pad byte is the
+ // value of the number of pad bytes)
+ var padding = (input.length() === this.blockSize ?
+ this.blockSize : (this.blockSize - input.length()));
+ input.fillWithByte(padding, padding);
+ return true;
+};
+
+modes.cbc.prototype.unpad = function(output, options) {
+ // check for error: input data not a multiple of blockSize
+ if(options.overflow > 0) {
+ return false;
+ }
+
+ // ensure padding byte count is valid
+ var len = output.length();
+ var count = output.at(len - 1);
+ if(count > (this.blockSize << 2)) {
+ return false;
+ }
+
+ // trim off padding bytes
+ output.truncate(count);
+ return true;
+};
+
+
+/** Cipher feedback (CFB) **/
+
+modes.cfb = function(options) {
+ options = options || {};
+ this.name = 'CFB';
+ this.cipher = options.cipher;
+ this.blockSize = options.blockSize || 16;
+ this._ints = this.blockSize / 4;
+ this._inBlock = null;
+ this._outBlock = new Array(this._ints);
+ this._partialBlock = new Array(this._ints);
+ this._partialOutput = forge.util.createBuffer();
+ this._partialBytes = 0;
+};
+
+modes.cfb.prototype.start = function(options) {
+ if(!('iv' in options)) {
+ throw new Error('Invalid IV parameter.');
+ }
+ // use IV as first input
+ this._iv = transformIV(options.iv);
+ this._inBlock = this._iv.slice(0);
+ this._partialBytes = 0;
+};
+
+modes.cfb.prototype.encrypt = function(input, output, finish) {
+ // not enough input to encrypt
+ var inputLength = input.length();
+ if(inputLength === 0) {
+ return true;
+ }
+
+ // encrypt block
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // handle full block
+ if(this._partialBytes === 0 && inputLength >= this.blockSize) {
+ // XOR input with output, write input as output
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
+ output.putInt32(this._inBlock[i]);
+ }
+ return;
+ }
+
+ // handle partial block
+ var partialBytes = (this.blockSize - inputLength) % this.blockSize;
+ if(partialBytes > 0) {
+ partialBytes = this.blockSize - partialBytes;
+ }
+
+ // XOR input with output, write input as partial output
+ this._partialOutput.clear();
+ for(var i = 0; i < this._ints; ++i) {
+ this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
+ this._partialOutput.putInt32(this._partialBlock[i]);
+ }
+
+ if(partialBytes > 0) {
+ // block still incomplete, restore input buffer
+ input.read -= this.blockSize;
+ } else {
+ // block complete, update input block
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = this._partialBlock[i];
+ }
+ }
+
+ // skip any previous partial bytes
+ if(this._partialBytes > 0) {
+ this._partialOutput.getBytes(this._partialBytes);
+ }
+
+ if(partialBytes > 0 && !finish) {
+ output.putBytes(this._partialOutput.getBytes(
+ partialBytes - this._partialBytes));
+ this._partialBytes = partialBytes;
+ return true;
+ }
+
+ output.putBytes(this._partialOutput.getBytes(
+ inputLength - this._partialBytes));
+ this._partialBytes = 0;
+};
+
+modes.cfb.prototype.decrypt = function(input, output, finish) {
+ // not enough input to decrypt
+ var inputLength = input.length();
+ if(inputLength === 0) {
+ return true;
+ }
+
+ // encrypt block (CFB always uses encryption mode)
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // handle full block
+ if(this._partialBytes === 0 && inputLength >= this.blockSize) {
+ // XOR input with output, write input as output
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = input.getInt32();
+ output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
+ }
+ return;
+ }
+
+ // handle partial block
+ var partialBytes = (this.blockSize - inputLength) % this.blockSize;
+ if(partialBytes > 0) {
+ partialBytes = this.blockSize - partialBytes;
+ }
+
+ // XOR input with output, write input as partial output
+ this._partialOutput.clear();
+ for(var i = 0; i < this._ints; ++i) {
+ this._partialBlock[i] = input.getInt32();
+ this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
+ }
+
+ if(partialBytes > 0) {
+ // block still incomplete, restore input buffer
+ input.read -= this.blockSize;
+ } else {
+ // block complete, update input block
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = this._partialBlock[i];
+ }
+ }
+
+ // skip any previous partial bytes
+ if(this._partialBytes > 0) {
+ this._partialOutput.getBytes(this._partialBytes);
+ }
+
+ if(partialBytes > 0 && !finish) {
+ output.putBytes(this._partialOutput.getBytes(
+ partialBytes - this._partialBytes));
+ this._partialBytes = partialBytes;
+ return true;
+ }
+
+ output.putBytes(this._partialOutput.getBytes(
+ inputLength - this._partialBytes));
+ this._partialBytes = 0;
+};
+
+/** Output feedback (OFB) **/
+
+modes.ofb = function(options) {
+ options = options || {};
+ this.name = 'OFB';
+ this.cipher = options.cipher;
+ this.blockSize = options.blockSize || 16;
+ this._ints = this.blockSize / 4;
+ this._inBlock = null;
+ this._outBlock = new Array(this._ints);
+ this._partialOutput = forge.util.createBuffer();
+ this._partialBytes = 0;
+};
+
+modes.ofb.prototype.start = function(options) {
+ if(!('iv' in options)) {
+ throw new Error('Invalid IV parameter.');
+ }
+ // use IV as first input
+ this._iv = transformIV(options.iv);
+ this._inBlock = this._iv.slice(0);
+ this._partialBytes = 0;
+};
+
+modes.ofb.prototype.encrypt = function(input, output, finish) {
+ // not enough input to encrypt
+ var inputLength = input.length();
+ if(input.length() === 0) {
+ return true;
+ }
+
+ // encrypt block (OFB always uses encryption mode)
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // handle full block
+ if(this._partialBytes === 0 && inputLength >= this.blockSize) {
+ // XOR input with output and update next input
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(input.getInt32() ^ this._outBlock[i]);
+ this._inBlock[i] = this._outBlock[i];
+ }
+ return;
+ }
+
+ // handle partial block
+ var partialBytes = (this.blockSize - inputLength) % this.blockSize;
+ if(partialBytes > 0) {
+ partialBytes = this.blockSize - partialBytes;
+ }
+
+ // XOR input with output
+ this._partialOutput.clear();
+ for(var i = 0; i < this._ints; ++i) {
+ this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
+ }
+
+ if(partialBytes > 0) {
+ // block still incomplete, restore input buffer
+ input.read -= this.blockSize;
+ } else {
+ // block complete, update input block
+ for(var i = 0; i < this._ints; ++i) {
+ this._inBlock[i] = this._outBlock[i];
+ }
+ }
+
+ // skip any previous partial bytes
+ if(this._partialBytes > 0) {
+ this._partialOutput.getBytes(this._partialBytes);
+ }
+
+ if(partialBytes > 0 && !finish) {
+ output.putBytes(this._partialOutput.getBytes(
+ partialBytes - this._partialBytes));
+ this._partialBytes = partialBytes;
+ return true;
+ }
+
+ output.putBytes(this._partialOutput.getBytes(
+ inputLength - this._partialBytes));
+ this._partialBytes = 0;
+};
+
+modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
+
+
+/** Counter (CTR) **/
+
+modes.ctr = function(options) {
+ options = options || {};
+ this.name = 'CTR';
+ this.cipher = options.cipher;
+ this.blockSize = options.blockSize || 16;
+ this._ints = this.blockSize / 4;
+ this._inBlock = null;
+ this._outBlock = new Array(this._ints);
+ this._partialOutput = forge.util.createBuffer();
+ this._partialBytes = 0;
+};
+
+modes.ctr.prototype.start = function(options) {
+ if(!('iv' in options)) {
+ throw new Error('Invalid IV parameter.');
+ }
+ // use IV as first input
+ this._iv = transformIV(options.iv);
+ this._inBlock = this._iv.slice(0);
+ this._partialBytes = 0;
+};
+
+modes.ctr.prototype.encrypt = function(input, output, finish) {
+ // not enough input to encrypt
+ var inputLength = input.length();
+ if(inputLength === 0) {
+ return true;
+ }
+
+ // encrypt block (CTR always uses encryption mode)
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // handle full block
+ if(this._partialBytes === 0 && inputLength >= this.blockSize) {
+ // XOR input with output
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(input.getInt32() ^ this._outBlock[i]);
+ }
+ } else {
+ // handle partial block
+ var partialBytes = (this.blockSize - inputLength) % this.blockSize;
+ if(partialBytes > 0) {
+ partialBytes = this.blockSize - partialBytes;
+ }
+
+ // XOR input with output
+ this._partialOutput.clear();
+ for(var i = 0; i < this._ints; ++i) {
+ this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
+ }
+
+ if(partialBytes > 0) {
+ // block still incomplete, restore input buffer
+ input.read -= this.blockSize;
+ }
+
+ // skip any previous partial bytes
+ if(this._partialBytes > 0) {
+ this._partialOutput.getBytes(this._partialBytes);
+ }
+
+ if(partialBytes > 0 && !finish) {
+ output.putBytes(this._partialOutput.getBytes(
+ partialBytes - this._partialBytes));
+ this._partialBytes = partialBytes;
+ return true;
+ }
+
+ output.putBytes(this._partialOutput.getBytes(
+ inputLength - this._partialBytes));
+ this._partialBytes = 0;
+ }
+
+ // block complete, increment counter (input block)
+ inc32(this._inBlock);
+};
+
+modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
+
+
+/** Galois/Counter Mode (GCM) **/
+
+modes.gcm = function(options) {
+ options = options || {};
+ this.name = 'GCM';
+ this.cipher = options.cipher;
+ this.blockSize = options.blockSize || 16;
+ this._ints = this.blockSize / 4;
+ this._inBlock = new Array(this._ints);
+ this._outBlock = new Array(this._ints);
+ this._partialOutput = forge.util.createBuffer();
+ this._partialBytes = 0;
+
+ // R is actually this value concatenated with 120 more zero bits, but
+ // we only XOR against R so the other zeros have no effect -- we just
+ // apply this value to the first integer in a block
+ this._R = 0xE1000000;
+};
+
+modes.gcm.prototype.start = function(options) {
+ if(!('iv' in options)) {
+ throw new Error('Invalid IV parameter.');
+ }
+ // ensure IV is a byte buffer
+ var iv = forge.util.createBuffer(options.iv);
+
+ // no ciphered data processed yet
+ this._cipherLength = 0;
+
+ // default additional data is none
+ var additionalData;
+ if('additionalData' in options) {
+ additionalData = forge.util.createBuffer(options.additionalData);
+ } else {
+ additionalData = forge.util.createBuffer();
+ }
+
+ // default tag length is 128 bits
+ if('tagLength' in options) {
+ this._tagLength = options.tagLength;
+ } else {
+ this._tagLength = 128;
+ }
+
+ // if tag is given, ensure tag matches tag length
+ this._tag = null;
+ if(options.decrypt) {
+ // save tag to check later
+ this._tag = forge.util.createBuffer(options.tag).getBytes();
+ if(this._tag.length !== (this._tagLength / 8)) {
+ throw new Error('Authentication tag does not match tag length.');
+ }
+ }
+
+ // create tmp storage for hash calculation
+ this._hashBlock = new Array(this._ints);
+
+ // no tag generated yet
+ this.tag = null;
+
+ // generate hash subkey
+ // (apply block cipher to "zero" block)
+ this._hashSubkey = new Array(this._ints);
+ this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
+
+ // generate table M
+ // use 4-bit tables (32 component decomposition of a 16 byte value)
+ // 8-bit tables take more space and are known to have security
+ // vulnerabilities (in native implementations)
+ this.componentBits = 4;
+ this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
+
+ // Note: support IV length different from 96 bits? (only supporting
+ // 96 bits is recommended by NIST SP-800-38D)
+ // generate J_0
+ var ivLength = iv.length();
+ if(ivLength === 12) {
+ // 96-bit IV
+ this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
+ } else {
+ // IV is NOT 96-bits
+ this._j0 = [0, 0, 0, 0];
+ while(iv.length() > 0) {
+ this._j0 = this.ghash(
+ this._hashSubkey, this._j0,
+ [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
+ }
+ this._j0 = this.ghash(
+ this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
+ }
+
+ // generate ICB (initial counter block)
+ this._inBlock = this._j0.slice(0);
+ inc32(this._inBlock);
+ this._partialBytes = 0;
+
+ // consume authentication data
+ additionalData = forge.util.createBuffer(additionalData);
+ // save additional data length as a BE 64-bit number
+ this._aDataLength = from64To32(additionalData.length() * 8);
+ // pad additional data to 128 bit (16 byte) block size
+ var overflow = additionalData.length() % this.blockSize;
+ if(overflow) {
+ additionalData.fillWithByte(0, this.blockSize - overflow);
+ }
+ this._s = [0, 0, 0, 0];
+ while(additionalData.length() > 0) {
+ this._s = this.ghash(this._hashSubkey, this._s, [
+ additionalData.getInt32(),
+ additionalData.getInt32(),
+ additionalData.getInt32(),
+ additionalData.getInt32()
+ ]);
+ }
+};
+
+modes.gcm.prototype.encrypt = function(input, output, finish) {
+ // not enough input to encrypt
+ var inputLength = input.length();
+ if(inputLength === 0) {
+ return true;
+ }
+
+ // encrypt block
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // handle full block
+ if(this._partialBytes === 0 && inputLength >= this.blockSize) {
+ // XOR input with output
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(this._outBlock[i] ^= input.getInt32());
+ }
+ this._cipherLength += this.blockSize;
+ } else {
+ // handle partial block
+ var partialBytes = (this.blockSize - inputLength) % this.blockSize;
+ if(partialBytes > 0) {
+ partialBytes = this.blockSize - partialBytes;
+ }
+
+ // XOR input with output
+ this._partialOutput.clear();
+ for(var i = 0; i < this._ints; ++i) {
+ this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
+ }
+
+ if(partialBytes === 0 || finish) {
+ // handle overflow prior to hashing
+ if(finish) {
+ // get block overflow
+ var overflow = inputLength % this.blockSize;
+ this._cipherLength += overflow;
+ // truncate for hash function
+ this._partialOutput.truncate(this.blockSize - overflow);
+ } else {
+ this._cipherLength += this.blockSize;
+ }
+
+ // get output block for hashing
+ for(var i = 0; i < this._ints; ++i) {
+ this._outBlock[i] = this._partialOutput.getInt32();
+ }
+ this._partialOutput.read -= this.blockSize;
+ }
+
+ // skip any previous partial bytes
+ if(this._partialBytes > 0) {
+ this._partialOutput.getBytes(this._partialBytes);
+ }
+
+ if(partialBytes > 0 && !finish) {
+ // block still incomplete, restore input buffer, get partial output,
+ // and return early
+ input.read -= this.blockSize;
+ output.putBytes(this._partialOutput.getBytes(
+ partialBytes - this._partialBytes));
+ this._partialBytes = partialBytes;
+ return true;
+ }
+
+ output.putBytes(this._partialOutput.getBytes(
+ inputLength - this._partialBytes));
+ this._partialBytes = 0;
+ }
+
+ // update hash block S
+ this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
+
+ // increment counter (input block)
+ inc32(this._inBlock);
+};
+
+modes.gcm.prototype.decrypt = function(input, output, finish) {
+ // not enough input to decrypt
+ var inputLength = input.length();
+ if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
+ return true;
+ }
+
+ // encrypt block (GCM always uses encryption mode)
+ this.cipher.encrypt(this._inBlock, this._outBlock);
+
+ // increment counter (input block)
+ inc32(this._inBlock);
+
+ // update hash block S
+ this._hashBlock[0] = input.getInt32();
+ this._hashBlock[1] = input.getInt32();
+ this._hashBlock[2] = input.getInt32();
+ this._hashBlock[3] = input.getInt32();
+ this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
+
+ // XOR hash input with output
+ for(var i = 0; i < this._ints; ++i) {
+ output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
+ }
+
+ // increment cipher data length
+ if(inputLength < this.blockSize) {
+ this._cipherLength += inputLength % this.blockSize;
+ } else {
+ this._cipherLength += this.blockSize;
+ }
+};
+
+modes.gcm.prototype.afterFinish = function(output, options) {
+ var rval = true;
+
+ // handle overflow
+ if(options.decrypt && options.overflow) {
+ output.truncate(this.blockSize - options.overflow);
+ }
+
+ // handle authentication tag
+ this.tag = forge.util.createBuffer();
+
+ // concatenate additional data length with cipher length
+ var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
+
+ // include lengths in hash
+ this._s = this.ghash(this._hashSubkey, this._s, lengths);
+
+ // do GCTR(J_0, S)
+ var tag = [];
+ this.cipher.encrypt(this._j0, tag);
+ for(var i = 0; i < this._ints; ++i) {
+ this.tag.putInt32(this._s[i] ^ tag[i]);
+ }
+
+ // trim tag to length
+ this.tag.truncate(this.tag.length() % (this._tagLength / 8));
+
+ // check authentication tag
+ if(options.decrypt && this.tag.bytes() !== this._tag) {
+ rval = false;
+ }
+
+ return rval;
+};
+
+/**
+ * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
+ * field multiplication. The field, GF(2^128), is defined by the polynomial:
+ *
+ * x^128 + x^7 + x^2 + x + 1
+ *
+ * Which is represented in little-endian binary form as: 11100001 (0xe1). When
+ * the value of a coefficient is 1, a bit is set. The value R, is the
+ * concatenation of this value and 120 zero bits, yielding a 128-bit value
+ * which matches the block size.
+ *
+ * This function will multiply two elements (vectors of bytes), X and Y, in
+ * the field GF(2^128). The result is initialized to zero. For each bit of
+ * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
+ * by the current value of Y. For each bit, the value of Y will be raised by
+ * a power of x (multiplied by the polynomial x). This can be achieved by
+ * shifting Y once to the right. If the current value of Y, prior to being
+ * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
+ * Otherwise, we must divide by R after shifting to find the remainder.
+ *
+ * @param x the first block to multiply by the second.
+ * @param y the second block to multiply by the first.
+ *
+ * @return the block result of the multiplication.
+ */
+modes.gcm.prototype.multiply = function(x, y) {
+ var z_i = [0, 0, 0, 0];
+ var v_i = y.slice(0);
+
+ // calculate Z_128 (block has 128 bits)
+ for(var i = 0; i < 128; ++i) {
+ // if x_i is 0, Z_{i+1} = Z_i (unchanged)
+ // else Z_{i+1} = Z_i ^ V_i
+ // get x_i by finding 32-bit int position, then left shift 1 by remainder
+ var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
+ if(x_i) {
+ z_i[0] ^= v_i[0];
+ z_i[1] ^= v_i[1];
+ z_i[2] ^= v_i[2];
+ z_i[3] ^= v_i[3];
+ }
+
+ // if LSB(V_i) is 1, V_i = V_i >> 1
+ // else V_i = (V_i >> 1) ^ R
+ this.pow(v_i, v_i);
+ }
+
+ return z_i;
+};
+
+modes.gcm.prototype.pow = function(x, out) {
+ // if LSB(x) is 1, x = x >>> 1
+ // else x = (x >>> 1) ^ R
+ var lsb = x[3] & 1;
+
+ // always do x >>> 1:
+ // starting with the rightmost integer, shift each integer to the right
+ // one bit, pulling in the bit from the integer to the left as its top
+ // most bit (do this for the last 3 integers)
+ for(var i = 3; i > 0; --i) {
+ out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
+ }
+ // shift the first integer normally
+ out[0] = x[0] >>> 1;
+
+ // if lsb was not set, then polynomial had a degree of 127 and doesn't
+ // need to divided; otherwise, XOR with R to find the remainder; we only
+ // need to XOR the first integer since R technically ends w/120 zero bits
+ if(lsb) {
+ out[0] ^= this._R;
+ }
+};
+
+modes.gcm.prototype.tableMultiply = function(x) {
+ // assumes 4-bit tables are used
+ var z = [0, 0, 0, 0];
+ for(var i = 0; i < 32; ++i) {
+ var idx = (i / 8) | 0;
+ var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
+ var ah = this._m[i][x_i];
+ z[0] ^= ah[0];
+ z[1] ^= ah[1];
+ z[2] ^= ah[2];
+ z[3] ^= ah[3];
+ }
+ return z;
+};
+
+/**
+ * A continuing version of the GHASH algorithm that operates on a single
+ * block. The hash block, last hash value (Ym) and the new block to hash
+ * are given.
+ *
+ * @param h the hash block.
+ * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
+ * @param x the block to hash.
+ *
+ * @return the hashed value (Ym).
+ */
+modes.gcm.prototype.ghash = function(h, y, x) {
+ y[0] ^= x[0];
+ y[1] ^= x[1];
+ y[2] ^= x[2];
+ y[3] ^= x[3];
+ return this.tableMultiply(y);
+ //return this.multiply(y, h);
+};
+
+/**
+ * Precomputes a table for multiplying against the hash subkey. This
+ * mechanism provides a substantial speed increase over multiplication
+ * performed without a table. The table-based multiplication this table is
+ * for solves X * H by multiplying each component of X by H and then
+ * composing the results together using XOR.
+ *
+ * This function can be used to generate tables with different bit sizes
+ * for the components, however, this implementation assumes there are
+ * 32 components of X (which is a 16 byte vector), therefore each component
+ * takes 4-bits (so the table is constructed with bits=4).
+ *
+ * @param h the hash subkey.
+ * @param bits the bit size for a component.
+ */
+modes.gcm.prototype.generateHashTable = function(h, bits) {
+ // TODO: There are further optimizations that would use only the
+ // first table M_0 (or some variant) along with a remainder table;
+ // this can be explored in the future
+ var multiplier = 8 / bits;
+ var perInt = 4 * multiplier;
+ var size = 16 * multiplier;
+ var m = new Array(size);
+ for(var i = 0; i < size; ++i) {
+ var tmp = [0, 0, 0, 0];
+ var idx = (i / perInt) | 0;
+ var shft = ((perInt - 1 - (i % perInt)) * bits);
+ tmp[idx] = (1 << (bits - 1)) << shft;
+ m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
+ }
+ return m;
+};
+
+/**
+ * Generates a table for multiplying against the hash subkey for one
+ * particular component (out of all possible component values).
+ *
+ * @param mid the pre-multiplied value for the middle key of the table.
+ * @param bits the bit size for a component.
+ */
+modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
+ // compute the table quickly by minimizing the number of
+ // POW operations -- they only need to be performed for powers of 2,
+ // all other entries can be composed from those powers using XOR
+ var size = 1 << bits;
+ var half = size >>> 1;
+ var m = new Array(size);
+ m[half] = mid.slice(0);
+ var i = half >>> 1;
+ while(i > 0) {
+ // raise m0[2 * i] and store in m0[i]
+ this.pow(m[2 * i], m[i] = []);
+ i >>= 1;
+ }
+ i = 2;
+ while(i < half) {
+ for(var j = 1; j < i; ++j) {
+ var m_i = m[i];
+ var m_j = m[j];
+ m[i + j] = [
+ m_i[0] ^ m_j[0],
+ m_i[1] ^ m_j[1],
+ m_i[2] ^ m_j[2],
+ m_i[3] ^ m_j[3]
+ ];
+ }
+ i *= 2;
+ }
+ m[0] = [0, 0, 0, 0];
+ /* Note: We could avoid storing these by doing composition during multiply
+ calculate top half using composition by speed is preferred. */
+ for(i = half + 1; i < size; ++i) {
+ var c = m[i ^ half];
+ m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
+ }
+ return m;
+};
+
+
+/** Utility functions */
+
+function transformIV(iv) {
+ if(typeof iv === 'string') {
+ // convert iv string into byte buffer
+ iv = forge.util.createBuffer(iv);
+ }
+
+ if(forge.util.isArray(iv) && iv.length > 4) {
+ // convert iv byte array into byte buffer
+ var tmp = iv;
+ iv = forge.util.createBuffer();
+ for(var i = 0; i < tmp.length; ++i) {
+ iv.putByte(tmp[i]);
+ }
+ }
+ if(!forge.util.isArray(iv)) {
+ // convert iv byte buffer into 32-bit integer array
+ iv = [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()];
+ }
+
+ return iv;
+}
+
+function inc32(block) {
+ // increment last 32 bits of block only
+ block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
+}
+
+function from64To32(num) {
+ // convert 64-bit number to two BE Int32s
+ return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
+}
+
+
+} // end module implementation
+
+/* ########## Begin module wrapper ########## */
+var name = 'cipherModes';
+if(typeof define !== 'function') {
+ // NodeJS -> AMD
+ if(typeof module === 'object' && module.exports) {
+ var nodeJS = true;
+ define = function(ids, factory) {
+ factory(require, module);
+ };
+ } else {
+ // <script>
+ if(typeof forge === 'undefined') {
+ forge = {};
+ }
+ return initModule(forge);
+ }
+}
+// AMD
+var deps;
+var defineFunc = function(require, module) {
+ module.exports = function(forge) {
+ var mods = deps.map(function(dep) {
+ return require(dep);
+ }).concat(initModule);
+ // handle circular dependencies
+ forge = forge || {};
+ forge.defined = forge.defined || {};
+ if(forge.defined[name]) {
+ return forge[name];
+ }
+ forge.defined[name] = true;
+ for(var i = 0; i < mods.length; ++i) {
+ mods[i](forge);
+ }
+ return forge[name];
+ };
+};
+var tmpDefine = define;
+define = function(ids, factory) {
+ deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
+ if(nodeJS) {
+ delete define;
+ return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
+ }
+ define = tmpDefine;
+ return define.apply(null, Array.prototype.slice.call(arguments, 0));
+};
+define(['require', 'module', './util'], function() {
+ defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
+});
+})();