summaryrefslogtreecommitdiff
path: root/alarm/node_modules/node-forge/js/tls.js
diff options
context:
space:
mode:
Diffstat (limited to 'alarm/node_modules/node-forge/js/tls.js')
-rw-r--r--alarm/node_modules/node-forge/js/tls.js4316
1 files changed, 0 insertions, 4316 deletions
diff --git a/alarm/node_modules/node-forge/js/tls.js b/alarm/node_modules/node-forge/js/tls.js
deleted file mode 100644
index b3bb2e8..0000000
--- a/alarm/node_modules/node-forge/js/tls.js
+++ /dev/null
@@ -1,4316 +0,0 @@
-/**
- * A Javascript implementation of Transport Layer Security (TLS).
- *
- * @author Dave Longley
- *
- * Copyright (c) 2009-2014 Digital Bazaar, Inc.
- *
- * The TLS Handshake Protocol involves the following steps:
- *
- * - Exchange hello messages to agree on algorithms, exchange random values,
- * and check for session resumption.
- *
- * - Exchange the necessary cryptographic parameters to allow the client and
- * server to agree on a premaster secret.
- *
- * - Exchange certificates and cryptographic information to allow the client
- * and server to authenticate themselves.
- *
- * - Generate a master secret from the premaster secret and exchanged random
- * values.
- *
- * - Provide security parameters to the record layer.
- *
- * - Allow the client and server to verify that their peer has calculated the
- * same security parameters and that the handshake occurred without tampering
- * by an attacker.
- *
- * Up to 4 different messages may be sent during a key exchange. The server
- * certificate, the server key exchange, the client certificate, and the
- * client key exchange.
- *
- * A typical handshake (from the client's perspective).
- *
- * 1. Client sends ClientHello.
- * 2. Client receives ServerHello.
- * 3. Client receives optional Certificate.
- * 4. Client receives optional ServerKeyExchange.
- * 5. Client receives ServerHelloDone.
- * 6. Client sends optional Certificate.
- * 7. Client sends ClientKeyExchange.
- * 8. Client sends optional CertificateVerify.
- * 9. Client sends ChangeCipherSpec.
- * 10. Client sends Finished.
- * 11. Client receives ChangeCipherSpec.
- * 12. Client receives Finished.
- * 13. Client sends/receives application data.
- *
- * To reuse an existing session:
- *
- * 1. Client sends ClientHello with session ID for reuse.
- * 2. Client receives ServerHello with same session ID if reusing.
- * 3. Client receives ChangeCipherSpec message if reusing.
- * 4. Client receives Finished.
- * 5. Client sends ChangeCipherSpec.
- * 6. Client sends Finished.
- *
- * Note: Client ignores HelloRequest if in the middle of a handshake.
- *
- * Record Layer:
- *
- * The record layer fragments information blocks into TLSPlaintext records
- * carrying data in chunks of 2^14 bytes or less. Client message boundaries are
- * not preserved in the record layer (i.e., multiple client messages of the
- * same ContentType MAY be coalesced into a single TLSPlaintext record, or a
- * single message MAY be fragmented across several records).
- *
- * struct {
- * uint8 major;
- * uint8 minor;
- * } ProtocolVersion;
- *
- * struct {
- * ContentType type;
- * ProtocolVersion version;
- * uint16 length;
- * opaque fragment[TLSPlaintext.length];
- * } TLSPlaintext;
- *
- * type:
- * The higher-level protocol used to process the enclosed fragment.
- *
- * version:
- * The version of the protocol being employed. TLS Version 1.2 uses version
- * {3, 3}. TLS Version 1.0 uses version {3, 1}. Note that a client that
- * supports multiple versions of TLS may not know what version will be
- * employed before it receives the ServerHello.
- *
- * length:
- * The length (in bytes) of the following TLSPlaintext.fragment. The length
- * MUST NOT exceed 2^14 = 16384 bytes.
- *
- * fragment:
- * The application data. This data is transparent and treated as an
- * independent block to be dealt with by the higher-level protocol specified
- * by the type field.
- *
- * Implementations MUST NOT send zero-length fragments of Handshake, Alert, or
- * ChangeCipherSpec content types. Zero-length fragments of Application data
- * MAY be sent as they are potentially useful as a traffic analysis
- * countermeasure.
- *
- * Note: Data of different TLS record layer content types MAY be interleaved.
- * Application data is generally of lower precedence for transmission than
- * other content types. However, records MUST be delivered to the network in
- * the same order as they are protected by the record layer. Recipients MUST
- * receive and process interleaved application layer traffic during handshakes
- * subsequent to the first one on a connection.
- *
- * struct {
- * ContentType type; // same as TLSPlaintext.type
- * ProtocolVersion version;// same as TLSPlaintext.version
- * uint16 length;
- * opaque fragment[TLSCompressed.length];
- * } TLSCompressed;
- *
- * length:
- * The length (in bytes) of the following TLSCompressed.fragment.
- * The length MUST NOT exceed 2^14 + 1024.
- *
- * fragment:
- * The compressed form of TLSPlaintext.fragment.
- *
- * Note: A CompressionMethod.null operation is an identity operation; no fields
- * are altered. In this implementation, since no compression is supported,
- * uncompressed records are always the same as compressed records.
- *
- * Encryption Information:
- *
- * The encryption and MAC functions translate a TLSCompressed structure into a
- * TLSCiphertext. The decryption functions reverse the process. The MAC of the
- * record also includes a sequence number so that missing, extra, or repeated
- * messages are detectable.
- *
- * struct {
- * ContentType type;
- * ProtocolVersion version;
- * uint16 length;
- * select (SecurityParameters.cipher_type) {
- * case stream: GenericStreamCipher;
- * case block: GenericBlockCipher;
- * case aead: GenericAEADCipher;
- * } fragment;
- * } TLSCiphertext;
- *
- * type:
- * The type field is identical to TLSCompressed.type.
- *
- * version:
- * The version field is identical to TLSCompressed.version.
- *
- * length:
- * The length (in bytes) of the following TLSCiphertext.fragment.
- * The length MUST NOT exceed 2^14 + 2048.
- *
- * fragment:
- * The encrypted form of TLSCompressed.fragment, with the MAC.
- *
- * Note: Only CBC Block Ciphers are supported by this implementation.
- *
- * The TLSCompressed.fragment structures are converted to/from block
- * TLSCiphertext.fragment structures.
- *
- * struct {
- * opaque IV[SecurityParameters.record_iv_length];
- * block-ciphered struct {
- * opaque content[TLSCompressed.length];
- * opaque MAC[SecurityParameters.mac_length];
- * uint8 padding[GenericBlockCipher.padding_length];
- * uint8 padding_length;
- * };
- * } GenericBlockCipher;
- *
- * The MAC is generated as described in Section 6.2.3.1.
- *
- * IV:
- * The Initialization Vector (IV) SHOULD be chosen at random, and MUST be
- * unpredictable. Note that in versions of TLS prior to 1.1, there was no
- * IV field, and the last ciphertext block of the previous record (the "CBC
- * residue") was used as the IV. This was changed to prevent the attacks
- * described in [CBCATT]. For block ciphers, the IV length is of length
- * SecurityParameters.record_iv_length, which is equal to the
- * SecurityParameters.block_size.
- *
- * padding:
- * Padding that is added to force the length of the plaintext to be an
- * integral multiple of the block cipher's block length. The padding MAY be
- * any length up to 255 bytes, as long as it results in the
- * TLSCiphertext.length being an integral multiple of the block length.
- * Lengths longer than necessary might be desirable to frustrate attacks on
- * a protocol that are based on analysis of the lengths of exchanged
- * messages. Each uint8 in the padding data vector MUST be filled with the
- * padding length value. The receiver MUST check this padding and MUST use
- * the bad_record_mac alert to indicate padding errors.
- *
- * padding_length:
- * The padding length MUST be such that the total size of the
- * GenericBlockCipher structure is a multiple of the cipher's block length.
- * Legal values range from zero to 255, inclusive. This length specifies the
- * length of the padding field exclusive of the padding_length field itself.
- *
- * The encrypted data length (TLSCiphertext.length) is one more than the sum of
- * SecurityParameters.block_length, TLSCompressed.length,
- * SecurityParameters.mac_length, and padding_length.
- *
- * Example: If the block length is 8 bytes, the content length
- * (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, then the
- * length before padding is 82 bytes (this does not include the IV. Thus, the
- * padding length modulo 8 must be equal to 6 in order to make the total length
- * an even multiple of 8 bytes (the block length). The padding length can be
- * 6, 14, 22, and so on, through 254. If the padding length were the minimum
- * necessary, 6, the padding would be 6 bytes, each containing the value 6.
- * Thus, the last 8 octets of the GenericBlockCipher before block encryption
- * would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC.
- *
- * Note: With block ciphers in CBC mode (Cipher Block Chaining), it is critical
- * that the entire plaintext of the record be known before any ciphertext is
- * transmitted. Otherwise, it is possible for the attacker to mount the attack
- * described in [CBCATT].
- *
- * Implementation note: Canvel et al. [CBCTIME] have demonstrated a timing
- * attack on CBC padding based on the time required to compute the MAC. In
- * order to defend against this attack, implementations MUST ensure that
- * record processing time is essentially the same whether or not the padding
- * is correct. In general, the best way to do this is to compute the MAC even
- * if the padding is incorrect, and only then reject the packet. For instance,
- * if the pad appears to be incorrect, the implementation might assume a
- * zero-length pad and then compute the MAC. This leaves a small timing
- * channel, since MAC performance depends, to some extent, on the size of the
- * data fragment, but it is not believed to be large enough to be exploitable,
- * due to the large block size of existing MACs and the small size of the
- * timing signal.
- */
-(function() {
-/* ########## Begin module implementation ########## */
-function initModule(forge) {
-
-/**
- * Generates pseudo random bytes by mixing the result of two hash functions,
- * MD5 and SHA-1.
- *
- * prf_TLS1(secret, label, seed) =
- * P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed);
- *
- * Each P_hash function functions as follows:
- *
- * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
- * HMAC_hash(secret, A(2) + seed) +
- * HMAC_hash(secret, A(3) + seed) + ...
- * A() is defined as:
- * A(0) = seed
- * A(i) = HMAC_hash(secret, A(i-1))
- *
- * The '+' operator denotes concatenation.
- *
- * As many iterations A(N) as are needed are performed to generate enough
- * pseudo random byte output. If an iteration creates more data than is
- * necessary, then it is truncated.
- *
- * Therefore:
- * A(1) = HMAC_hash(secret, A(0))
- * = HMAC_hash(secret, seed)
- * A(2) = HMAC_hash(secret, A(1))
- * = HMAC_hash(secret, HMAC_hash(secret, seed))
- *
- * Therefore:
- * P_hash(secret, seed) =
- * HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) +
- * HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) +
- * ...
- *
- * Therefore:
- * P_hash(secret, seed) =
- * HMAC_hash(secret, HMAC_hash(secret, seed) + seed) +
- * HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) +
- * ...
- *
- * @param secret the secret to use.
- * @param label the label to use.
- * @param seed the seed value to use.
- * @param length the number of bytes to generate.
- *
- * @return the pseudo random bytes in a byte buffer.
- */
-var prf_TLS1 = function(secret, label, seed, length) {
- var rval = forge.util.createBuffer();
-
- /* For TLS 1.0, the secret is split in half, into two secrets of equal
- length. If the secret has an odd length then the last byte of the first
- half will be the same as the first byte of the second. The length of the
- two secrets is half of the secret rounded up. */
- var idx = (secret.length >> 1);
- var slen = idx + (secret.length & 1);
- var s1 = secret.substr(0, slen);
- var s2 = secret.substr(idx, slen);
- var ai = forge.util.createBuffer();
- var hmac = forge.hmac.create();
- seed = label + seed;
-
- // determine the number of iterations that must be performed to generate
- // enough output bytes, md5 creates 16 byte hashes, sha1 creates 20
- var md5itr = Math.ceil(length / 16);
- var sha1itr = Math.ceil(length / 20);
-
- // do md5 iterations
- hmac.start('MD5', s1);
- var md5bytes = forge.util.createBuffer();
- ai.putBytes(seed);
- for(var i = 0; i < md5itr; ++i) {
- // HMAC_hash(secret, A(i-1))
- hmac.start(null, null);
- hmac.update(ai.getBytes());
- ai.putBuffer(hmac.digest());
-
- // HMAC_hash(secret, A(i) + seed)
- hmac.start(null, null);
- hmac.update(ai.bytes() + seed);
- md5bytes.putBuffer(hmac.digest());
- }
-
- // do sha1 iterations
- hmac.start('SHA1', s2);
- var sha1bytes = forge.util.createBuffer();
- ai.clear();
- ai.putBytes(seed);
- for(var i = 0; i < sha1itr; ++i) {
- // HMAC_hash(secret, A(i-1))
- hmac.start(null, null);
- hmac.update(ai.getBytes());
- ai.putBuffer(hmac.digest());
-
- // HMAC_hash(secret, A(i) + seed)
- hmac.start(null, null);
- hmac.update(ai.bytes() + seed);
- sha1bytes.putBuffer(hmac.digest());
- }
-
- // XOR the md5 bytes with the sha1 bytes
- rval.putBytes(forge.util.xorBytes(
- md5bytes.getBytes(), sha1bytes.getBytes(), length));
-
- return rval;
-};
-
-/**
- * Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2.
- *
- * @param secret the secret to use.
- * @param label the label to use.
- * @param seed the seed value to use.
- * @param length the number of bytes to generate.
- *
- * @return the pseudo random bytes in a byte buffer.
- */
-var prf_sha256 = function(secret, label, seed, length) {
- // FIXME: implement me for TLS 1.2
-};
-
-/**
- * Gets a MAC for a record using the SHA-1 hash algorithm.
- *
- * @param key the mac key.
- * @param state the sequence number (array of two 32-bit integers).
- * @param record the record.
- *
- * @return the sha-1 hash (20 bytes) for the given record.
- */
-var hmac_sha1 = function(key, seqNum, record) {
- /* MAC is computed like so:
- HMAC_hash(
- key, seqNum +
- TLSCompressed.type +
- TLSCompressed.version +
- TLSCompressed.length +
- TLSCompressed.fragment)
- */
- var hmac = forge.hmac.create();
- hmac.start('SHA1', key);
- var b = forge.util.createBuffer();
- b.putInt32(seqNum[0]);
- b.putInt32(seqNum[1]);
- b.putByte(record.type);
- b.putByte(record.version.major);
- b.putByte(record.version.minor);
- b.putInt16(record.length);
- b.putBytes(record.fragment.bytes());
- hmac.update(b.getBytes());
- return hmac.digest().getBytes();
-};
-
-/**
- * Compresses the TLSPlaintext record into a TLSCompressed record using the
- * deflate algorithm.
- *
- * @param c the TLS connection.
- * @param record the TLSPlaintext record to compress.
- * @param s the ConnectionState to use.
- *
- * @return true on success, false on failure.
- */
-var deflate = function(c, record, s) {
- var rval = false;
-
- try {
- var bytes = c.deflate(record.fragment.getBytes());
- record.fragment = forge.util.createBuffer(bytes);
- record.length = bytes.length;
- rval = true;
- } catch(ex) {
- // deflate error, fail out
- }
-
- return rval;
-};
-
-/**
- * Decompresses the TLSCompressed record into a TLSPlaintext record using the
- * deflate algorithm.
- *
- * @param c the TLS connection.
- * @param record the TLSCompressed record to decompress.
- * @param s the ConnectionState to use.
- *
- * @return true on success, false on failure.
- */
-var inflate = function(c, record, s) {
- var rval = false;
-
- try {
- var bytes = c.inflate(record.fragment.getBytes());
- record.fragment = forge.util.createBuffer(bytes);
- record.length = bytes.length;
- rval = true;
- } catch(ex) {
- // inflate error, fail out
- }
-
- return rval;
-};
-
-/**
- * Reads a TLS variable-length vector from a byte buffer.
- *
- * Variable-length vectors are defined by specifying a subrange of legal
- * lengths, inclusively, using the notation <floor..ceiling>. When these are
- * encoded, the actual length precedes the vector's contents in the byte
- * stream. The length will be in the form of a number consuming as many bytes
- * as required to hold the vector's specified maximum (ceiling) length. A
- * variable-length vector with an actual length field of zero is referred to
- * as an empty vector.
- *
- * @param b the byte buffer.
- * @param lenBytes the number of bytes required to store the length.
- *
- * @return the resulting byte buffer.
- */
-var readVector = function(b, lenBytes) {
- var len = 0;
- switch(lenBytes) {
- case 1:
- len = b.getByte();
- break;
- case 2:
- len = b.getInt16();
- break;
- case 3:
- len = b.getInt24();
- break;
- case 4:
- len = b.getInt32();
- break;
- }
-
- // read vector bytes into a new buffer
- return forge.util.createBuffer(b.getBytes(len));
-};
-
-/**
- * Writes a TLS variable-length vector to a byte buffer.
- *
- * @param b the byte buffer.
- * @param lenBytes the number of bytes required to store the length.
- * @param v the byte buffer vector.
- */
-var writeVector = function(b, lenBytes, v) {
- // encode length at the start of the vector, where the number of bytes for
- // the length is the maximum number of bytes it would take to encode the
- // vector's ceiling
- b.putInt(v.length(), lenBytes << 3);
- b.putBuffer(v);
-};
-
-/**
- * The tls implementation.
- */
-var tls = {};
-
-/**
- * Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and
- * TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time
- * of this implementation so TLS 1.0 was implemented instead.
- */
-tls.Versions = {
- TLS_1_0: {major: 3, minor: 1},
- TLS_1_1: {major: 3, minor: 2},
- TLS_1_2: {major: 3, minor: 3}
-};
-tls.SupportedVersions = [
- tls.Versions.TLS_1_1,
- tls.Versions.TLS_1_0
-];
-tls.Version = tls.SupportedVersions[0];
-
-/**
- * Maximum fragment size. True maximum is 16384, but we fragment before that
- * to allow for unusual small increases during compression.
- */
-tls.MaxFragment = 16384 - 1024;
-
-/**
- * Whether this entity is considered the "client" or "server".
- * enum { server, client } ConnectionEnd;
- */
-tls.ConnectionEnd = {
- server: 0,
- client: 1
-};
-
-/**
- * Pseudo-random function algorithm used to generate keys from the master
- * secret.
- * enum { tls_prf_sha256 } PRFAlgorithm;
- */
-tls.PRFAlgorithm = {
- tls_prf_sha256: 0
-};
-
-/**
- * Bulk encryption algorithms.
- * enum { null, rc4, des3, aes } BulkCipherAlgorithm;
- */
-tls.BulkCipherAlgorithm = {
- none: null,
- rc4: 0,
- des3: 1,
- aes: 2
-};
-
-/**
- * Cipher types.
- * enum { stream, block, aead } CipherType;
- */
-tls.CipherType = {
- stream: 0,
- block: 1,
- aead: 2
-};
-
-/**
- * MAC (Message Authentication Code) algorithms.
- * enum { null, hmac_md5, hmac_sha1, hmac_sha256,
- * hmac_sha384, hmac_sha512} MACAlgorithm;
- */
-tls.MACAlgorithm = {
- none: null,
- hmac_md5: 0,
- hmac_sha1: 1,
- hmac_sha256: 2,
- hmac_sha384: 3,
- hmac_sha512: 4
-};
-
-/**
- * Compression algorithms.
- * enum { null(0), deflate(1), (255) } CompressionMethod;
- */
-tls.CompressionMethod = {
- none: 0,
- deflate: 1
-};
-
-/**
- * TLS record content types.
- * enum {
- * change_cipher_spec(20), alert(21), handshake(22),
- * application_data(23), (255)
- * } ContentType;
- */
-tls.ContentType = {
- change_cipher_spec: 20,
- alert: 21,
- handshake: 22,
- application_data: 23,
- heartbeat: 24
-};
-
-/**
- * TLS handshake types.
- * enum {
- * hello_request(0), client_hello(1), server_hello(2),
- * certificate(11), server_key_exchange (12),
- * certificate_request(13), server_hello_done(14),
- * certificate_verify(15), client_key_exchange(16),
- * finished(20), (255)
- * } HandshakeType;
- */
-tls.HandshakeType = {
- hello_request: 0,
- client_hello: 1,
- server_hello: 2,
- certificate: 11,
- server_key_exchange: 12,
- certificate_request: 13,
- server_hello_done: 14,
- certificate_verify: 15,
- client_key_exchange: 16,
- finished: 20
-};
-
-/**
- * TLS Alert Protocol.
- *
- * enum { warning(1), fatal(2), (255) } AlertLevel;
- *
- * enum {
- * close_notify(0),
- * unexpected_message(10),
- * bad_record_mac(20),
- * decryption_failed(21),
- * record_overflow(22),
- * decompression_failure(30),
- * handshake_failure(40),
- * bad_certificate(42),
- * unsupported_certificate(43),
- * certificate_revoked(44),
- * certificate_expired(45),
- * certificate_unknown(46),
- * illegal_parameter(47),
- * unknown_ca(48),
- * access_denied(49),
- * decode_error(50),
- * decrypt_error(51),
- * export_restriction(60),
- * protocol_version(70),
- * insufficient_security(71),
- * internal_error(80),
- * user_canceled(90),
- * no_renegotiation(100),
- * (255)
- * } AlertDescription;
- *
- * struct {
- * AlertLevel level;
- * AlertDescription description;
- * } Alert;
- */
-tls.Alert = {};
-tls.Alert.Level = {
- warning: 1,
- fatal: 2
-};
-tls.Alert.Description = {
- close_notify: 0,
- unexpected_message: 10,
- bad_record_mac: 20,
- decryption_failed: 21,
- record_overflow: 22,
- decompression_failure: 30,
- handshake_failure: 40,
- bad_certificate: 42,
- unsupported_certificate: 43,
- certificate_revoked: 44,
- certificate_expired: 45,
- certificate_unknown: 46,
- illegal_parameter: 47,
- unknown_ca: 48,
- access_denied: 49,
- decode_error: 50,
- decrypt_error: 51,
- export_restriction: 60,
- protocol_version: 70,
- insufficient_security: 71,
- internal_error: 80,
- user_canceled: 90,
- no_renegotiation: 100
-};
-
-/**
- * TLS Heartbeat Message types.
- * enum {
- * heartbeat_request(1),
- * heartbeat_response(2),
- * (255)
- * } HeartbeatMessageType;
- */
-tls.HeartbeatMessageType = {
- heartbeat_request: 1,
- heartbeat_response: 2
-};
-
-/**
- * Supported cipher suites.
- */
-tls.CipherSuites = {};
-
-/**
- * Gets a supported cipher suite from its 2 byte ID.
- *
- * @param twoBytes two bytes in a string.
- *
- * @return the matching supported cipher suite or null.
- */
-tls.getCipherSuite = function(twoBytes) {
- var rval = null;
- for(var key in tls.CipherSuites) {
- var cs = tls.CipherSuites[key];
- if(cs.id[0] === twoBytes.charCodeAt(0) &&
- cs.id[1] === twoBytes.charCodeAt(1)) {
- rval = cs;
- break;
- }
- }
- return rval;
-};
-
-/**
- * Called when an unexpected record is encountered.
- *
- * @param c the connection.
- * @param record the record.
- */
-tls.handleUnexpected = function(c, record) {
- // if connection is client and closed, ignore unexpected messages
- var ignore = (!c.open && c.entity === tls.ConnectionEnd.client);
- if(!ignore) {
- c.error(c, {
- message: 'Unexpected message. Received TLS record out of order.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.unexpected_message
- }
- });
- }
-};
-
-/**
- * Called when a client receives a HelloRequest record.
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleHelloRequest = function(c, record, length) {
- // ignore renegotiation requests from the server during a handshake, but
- // if handshaking, send a warning alert that renegotation is denied
- if(!c.handshaking && c.handshakes > 0) {
- // send alert warning
- tls.queue(c, tls.createAlert(c, {
- level: tls.Alert.Level.warning,
- description: tls.Alert.Description.no_renegotiation
- }));
- tls.flush(c);
- }
-
- // continue
- c.process();
-};
-
-/**
- * Parses a hello message from a ClientHello or ServerHello record.
- *
- * @param record the record to parse.
- *
- * @return the parsed message.
- */
-tls.parseHelloMessage = function(c, record, length) {
- var msg = null;
-
- var client = (c.entity === tls.ConnectionEnd.client);
-
- // minimum of 38 bytes in message
- if(length < 38) {
- c.error(c, {
- message: client ?
- 'Invalid ServerHello message. Message too short.' :
- 'Invalid ClientHello message. Message too short.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.illegal_parameter
- }
- });
- } else {
- // use 'remaining' to calculate # of remaining bytes in the message
- var b = record.fragment;
- var remaining = b.length();
- msg = {
- version: {
- major: b.getByte(),
- minor: b.getByte()
- },
- random: forge.util.createBuffer(b.getBytes(32)),
- session_id: readVector(b, 1),
- extensions: []
- };
- if(client) {
- msg.cipher_suite = b.getBytes(2);
- msg.compression_method = b.getByte();
- } else {
- msg.cipher_suites = readVector(b, 2);
- msg.compression_methods = readVector(b, 1);
- }
-
- // read extensions if there are any bytes left in the message
- remaining = length - (remaining - b.length());
- if(remaining > 0) {
- // parse extensions
- var exts = readVector(b, 2);
- while(exts.length() > 0) {
- msg.extensions.push({
- type: [exts.getByte(), exts.getByte()],
- data: readVector(exts, 2)
- });
- }
-
- // TODO: make extension support modular
- if(!client) {
- for(var i = 0; i < msg.extensions.length; ++i) {
- var ext = msg.extensions[i];
-
- // support SNI extension
- if(ext.type[0] === 0x00 && ext.type[1] === 0x00) {
- // get server name list
- var snl = readVector(ext.data, 2);
- while(snl.length() > 0) {
- // read server name type
- var snType = snl.getByte();
-
- // only HostName type (0x00) is known, break out if
- // another type is detected
- if(snType !== 0x00) {
- break;
- }
-
- // add host name to server name list
- c.session.extensions.server_name.serverNameList.push(
- readVector(snl, 2).getBytes());
- }
- }
- }
- }
- }
-
- // version already set, do not allow version change
- if(c.session.version) {
- if(msg.version.major !== c.session.version.major ||
- msg.version.minor !== c.session.version.minor) {
- return c.error(c, {
- message: 'TLS version change is disallowed during renegotiation.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.protocol_version
- }
- });
- }
- }
-
- // get the chosen (ServerHello) cipher suite
- if(client) {
- // FIXME: should be checking configured acceptable cipher suites
- c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite);
- } else {
- // get a supported preferred (ClientHello) cipher suite
- // choose the first supported cipher suite
- var tmp = forge.util.createBuffer(msg.cipher_suites.bytes());
- while(tmp.length() > 0) {
- // FIXME: should be checking configured acceptable suites
- // cipher suites take up 2 bytes
- c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2));
- if(c.session.cipherSuite !== null) {
- break;
- }
- }
- }
-
- // cipher suite not supported
- if(c.session.cipherSuite === null) {
- return c.error(c, {
- message: 'No cipher suites in common.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.handshake_failure
- },
- cipherSuite: forge.util.bytesToHex(msg.cipher_suite)
- });
- }
-
- // TODO: handle compression methods
- if(client) {
- c.session.compressionMethod = msg.compression_method;
- } else {
- // no compression
- c.session.compressionMethod = tls.CompressionMethod.none;
- }
- }
-
- return msg;
-};
-
-/**
- * Creates security parameters for the given connection based on the given
- * hello message.
- *
- * @param c the TLS connection.
- * @param msg the hello message.
- */
-tls.createSecurityParameters = function(c, msg) {
- /* Note: security params are from TLS 1.2, some values like prf_algorithm
- are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is
- used. */
-
- // TODO: handle other options from server when more supported
-
- // get client and server randoms
- var client = (c.entity === tls.ConnectionEnd.client);
- var msgRandom = msg.random.bytes();
- var cRandom = client ? c.session.sp.client_random : msgRandom;
- var sRandom = client ? msgRandom : tls.createRandom().getBytes();
-
- // create new security parameters
- c.session.sp = {
- entity: c.entity,
- prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256,
- bulk_cipher_algorithm: null,
- cipher_type: null,
- enc_key_length: null,
- block_length: null,
- fixed_iv_length: null,
- record_iv_length: null,
- mac_algorithm: null,
- mac_length: null,
- mac_key_length: null,
- compression_algorithm: c.session.compressionMethod,
- pre_master_secret: null,
- master_secret: null,
- client_random: cRandom,
- server_random: sRandom
- };
-};
-
-/**
- * Called when a client receives a ServerHello record.
- *
- * When a ServerHello message will be sent:
- * The server will send this message in response to a client hello message
- * when it was able to find an acceptable set of algorithms. If it cannot
- * find such a match, it will respond with a handshake failure alert.
- *
- * uint24 length;
- * struct {
- * ProtocolVersion server_version;
- * Random random;
- * SessionID session_id;
- * CipherSuite cipher_suite;
- * CompressionMethod compression_method;
- * select(extensions_present) {
- * case false:
- * struct {};
- * case true:
- * Extension extensions<0..2^16-1>;
- * };
- * } ServerHello;
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleServerHello = function(c, record, length) {
- var msg = tls.parseHelloMessage(c, record, length);
- if(c.fail) {
- return;
- }
-
- // ensure server version is compatible
- if(msg.version.minor <= c.version.minor) {
- c.version.minor = msg.version.minor;
- } else {
- return c.error(c, {
- message: 'Incompatible TLS version.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.protocol_version
- }
- });
- }
-
- // indicate session version has been set
- c.session.version = c.version;
-
- // get the session ID from the message
- var sessionId = msg.session_id.bytes();
-
- // if the session ID is not blank and matches the cached one, resume
- // the session
- if(sessionId.length > 0 && sessionId === c.session.id) {
- // resuming session, expect a ChangeCipherSpec next
- c.expect = SCC;
- c.session.resuming = true;
-
- // get new server random
- c.session.sp.server_random = msg.random.bytes();
- } else {
- // not resuming, expect a server Certificate message next
- c.expect = SCE;
- c.session.resuming = false;
-
- // create new security parameters
- tls.createSecurityParameters(c, msg);
- }
-
- // set new session ID
- c.session.id = sessionId;
-
- // continue
- c.process();
-};
-
-/**
- * Called when a server receives a ClientHello record.
- *
- * When a ClientHello message will be sent:
- * When a client first connects to a server it is required to send the
- * client hello as its first message. The client can also send a client
- * hello in response to a hello request or on its own initiative in order
- * to renegotiate the security parameters in an existing connection.
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleClientHello = function(c, record, length) {
- var msg = tls.parseHelloMessage(c, record, length);
- if(c.fail) {
- return;
- }
-
- // get the session ID from the message
- var sessionId = msg.session_id.bytes();
-
- // see if the given session ID is in the cache
- var session = null;
- if(c.sessionCache) {
- session = c.sessionCache.getSession(sessionId);
- if(session === null) {
- // session ID not found
- sessionId = '';
- } else if(session.version.major !== msg.version.major ||
- session.version.minor > msg.version.minor) {
- // if session version is incompatible with client version, do not resume
- session = null;
- sessionId = '';
- }
- }
-
- // no session found to resume, generate a new session ID
- if(sessionId.length === 0) {
- sessionId = forge.random.getBytes(32);
- }
-
- // update session
- c.session.id = sessionId;
- c.session.clientHelloVersion = msg.version;
- c.session.sp = {};
- if(session) {
- // use version and security parameters from resumed session
- c.version = c.session.version = session.version;
- c.session.sp = session.sp;
- } else {
- // use highest compatible minor version
- var version;
- for(var i = 1; i < tls.SupportedVersions.length; ++i) {
- version = tls.SupportedVersions[i];
- if(version.minor <= msg.version.minor) {
- break;
- }
- }
- c.version = {major: version.major, minor: version.minor};
- c.session.version = c.version;
- }
-
- // if a session is set, resume it
- if(session !== null) {
- // resuming session, expect a ChangeCipherSpec next
- c.expect = CCC;
- c.session.resuming = true;
-
- // get new client random
- c.session.sp.client_random = msg.random.bytes();
- } else {
- // not resuming, expect a Certificate or ClientKeyExchange
- c.expect = (c.verifyClient !== false) ? CCE : CKE;
- c.session.resuming = false;
-
- // create new security parameters
- tls.createSecurityParameters(c, msg);
- }
-
- // connection now open
- c.open = true;
-
- // queue server hello
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createServerHello(c)
- }));
-
- if(c.session.resuming) {
- // queue change cipher spec message
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.change_cipher_spec,
- data: tls.createChangeCipherSpec()
- }));
-
- // create pending state
- c.state.pending = tls.createConnectionState(c);
-
- // change current write state to pending write state
- c.state.current.write = c.state.pending.write;
-
- // queue finished
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createFinished(c)
- }));
- } else {
- // queue server certificate
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createCertificate(c)
- }));
-
- if(!c.fail) {
- // queue server key exchange
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createServerKeyExchange(c)
- }));
-
- // request client certificate if set
- if(c.verifyClient !== false) {
- // queue certificate request
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createCertificateRequest(c)
- }));
- }
-
- // queue server hello done
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createServerHelloDone(c)
- }));
- }
- }
-
- // send records
- tls.flush(c);
-
- // continue
- c.process();
-};
-
-/**
- * Called when a client receives a Certificate record.
- *
- * When this message will be sent:
- * The server must send a certificate whenever the agreed-upon key exchange
- * method is not an anonymous one. This message will always immediately
- * follow the server hello message.
- *
- * Meaning of this message:
- * The certificate type must be appropriate for the selected cipher suite's
- * key exchange algorithm, and is generally an X.509v3 certificate. It must
- * contain a key which matches the key exchange method, as follows. Unless
- * otherwise specified, the signing algorithm for the certificate must be
- * the same as the algorithm for the certificate key. Unless otherwise
- * specified, the public key may be of any length.
- *
- * opaque ASN.1Cert<1..2^24-1>;
- * struct {
- * ASN.1Cert certificate_list<1..2^24-1>;
- * } Certificate;
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleCertificate = function(c, record, length) {
- // minimum of 3 bytes in message
- if(length < 3) {
- return c.error(c, {
- message: 'Invalid Certificate message. Message too short.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.illegal_parameter
- }
- });
- }
-
- var b = record.fragment;
- var msg = {
- certificate_list: readVector(b, 3)
- };
-
- /* The sender's certificate will be first in the list (chain), each
- subsequent one that follows will certify the previous one, but root
- certificates (self-signed) that specify the certificate authority may
- be omitted under the assumption that clients must already possess it. */
- var cert, asn1;
- var certs = [];
- try {
- while(msg.certificate_list.length() > 0) {
- // each entry in msg.certificate_list is a vector with 3 len bytes
- cert = readVector(msg.certificate_list, 3);
- asn1 = forge.asn1.fromDer(cert);
- cert = forge.pki.certificateFromAsn1(asn1, true);
- certs.push(cert);
- }
- } catch(ex) {
- return c.error(c, {
- message: 'Could not parse certificate list.',
- cause: ex,
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.bad_certificate
- }
- });
- }
-
- // ensure at least 1 certificate was provided if in client-mode
- // or if verifyClient was set to true to require a certificate
- // (as opposed to 'optional')
- var client = (c.entity === tls.ConnectionEnd.client);
- if((client || c.verifyClient === true) && certs.length === 0) {
- // error, no certificate
- c.error(c, {
- message: client ?
- 'No server certificate provided.' :
- 'No client certificate provided.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.illegal_parameter
- }
- });
- } else if(certs.length === 0) {
- // no certs to verify
- // expect a ServerKeyExchange or ClientKeyExchange message next
- c.expect = client ? SKE : CKE;
- } else {
- // save certificate in session
- if(client) {
- c.session.serverCertificate = certs[0];
- } else {
- c.session.clientCertificate = certs[0];
- }
-
- if(tls.verifyCertificateChain(c, certs)) {
- // expect a ServerKeyExchange or ClientKeyExchange message next
- c.expect = client ? SKE : CKE;
- }
- }
-
- // continue
- c.process();
-};
-
-/**
- * Called when a client receives a ServerKeyExchange record.
- *
- * When this message will be sent:
- * This message will be sent immediately after the server certificate
- * message (or the server hello message, if this is an anonymous
- * negotiation).
- *
- * The server key exchange message is sent by the server only when the
- * server certificate message (if sent) does not contain enough data to
- * allow the client to exchange a premaster secret.
- *
- * Meaning of this message:
- * This message conveys cryptographic information to allow the client to
- * communicate the premaster secret: either an RSA public key to encrypt
- * the premaster secret with, or a Diffie-Hellman public key with which the
- * client can complete a key exchange (with the result being the premaster
- * secret.)
- *
- * enum {
- * dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa
- * } KeyExchangeAlgorithm;
- *
- * struct {
- * opaque dh_p<1..2^16-1>;
- * opaque dh_g<1..2^16-1>;
- * opaque dh_Ys<1..2^16-1>;
- * } ServerDHParams;
- *
- * struct {
- * select(KeyExchangeAlgorithm) {
- * case dh_anon:
- * ServerDHParams params;
- * case dhe_dss:
- * case dhe_rsa:
- * ServerDHParams params;
- * digitally-signed struct {
- * opaque client_random[32];
- * opaque server_random[32];
- * ServerDHParams params;
- * } signed_params;
- * case rsa:
- * case dh_dss:
- * case dh_rsa:
- * struct {};
- * };
- * } ServerKeyExchange;
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleServerKeyExchange = function(c, record, length) {
- // this implementation only supports RSA, no Diffie-Hellman support
- // so any length > 0 is invalid
- if(length > 0) {
- return c.error(c, {
- message: 'Invalid key parameters. Only RSA is supported.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.unsupported_certificate
- }
- });
- }
-
- // expect an optional CertificateRequest message next
- c.expect = SCR;
-
- // continue
- c.process();
-};
-
-/**
- * Called when a client receives a ClientKeyExchange record.
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleClientKeyExchange = function(c, record, length) {
- // this implementation only supports RSA, no Diffie-Hellman support
- // so any length < 48 is invalid
- if(length < 48) {
- return c.error(c, {
- message: 'Invalid key parameters. Only RSA is supported.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.unsupported_certificate
- }
- });
- }
-
- var b = record.fragment;
- var msg = {
- enc_pre_master_secret: readVector(b, 2).getBytes()
- };
-
- // do rsa decryption
- var privateKey = null;
- if(c.getPrivateKey) {
- try {
- privateKey = c.getPrivateKey(c, c.session.serverCertificate);
- privateKey = forge.pki.privateKeyFromPem(privateKey);
- } catch(ex) {
- c.error(c, {
- message: 'Could not get private key.',
- cause: ex,
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.internal_error
- }
- });
- }
- }
-
- if(privateKey === null) {
- return c.error(c, {
- message: 'No private key set.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.internal_error
- }
- });
- }
-
- try {
- // decrypt 48-byte pre-master secret
- var sp = c.session.sp;
- sp.pre_master_secret = privateKey.decrypt(msg.enc_pre_master_secret);
-
- // ensure client hello version matches first 2 bytes
- var version = c.session.clientHelloVersion;
- if(version.major !== sp.pre_master_secret.charCodeAt(0) ||
- version.minor !== sp.pre_master_secret.charCodeAt(1)) {
- // error, do not send alert (see BLEI attack below)
- throw new Error('TLS version rollback attack detected.');
- }
- } catch(ex) {
- /* Note: Daniel Bleichenbacher [BLEI] can be used to attack a
- TLS server which is using PKCS#1 encoded RSA, so instead of
- failing here, we generate 48 random bytes and use that as
- the pre-master secret. */
- sp.pre_master_secret = forge.random.getBytes(48);
- }
-
- // expect a CertificateVerify message if a Certificate was received that
- // does not have fixed Diffie-Hellman params, otherwise expect
- // ChangeCipherSpec
- c.expect = CCC;
- if(c.session.clientCertificate !== null) {
- // only RSA support, so expect CertificateVerify
- // TODO: support Diffie-Hellman
- c.expect = CCV;
- }
-
- // continue
- c.process();
-};
-
-/**
- * Called when a client receives a CertificateRequest record.
- *
- * When this message will be sent:
- * A non-anonymous server can optionally request a certificate from the
- * client, if appropriate for the selected cipher suite. This message, if
- * sent, will immediately follow the Server Key Exchange message (if it is
- * sent; otherwise, the Server Certificate message).
- *
- * enum {
- * rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
- * rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
- * fortezza_dms_RESERVED(20), (255)
- * } ClientCertificateType;
- *
- * opaque DistinguishedName<1..2^16-1>;
- *
- * struct {
- * ClientCertificateType certificate_types<1..2^8-1>;
- * SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>;
- * DistinguishedName certificate_authorities<0..2^16-1>;
- * } CertificateRequest;
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleCertificateRequest = function(c, record, length) {
- // minimum of 3 bytes in message
- if(length < 3) {
- return c.error(c, {
- message: 'Invalid CertificateRequest. Message too short.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.illegal_parameter
- }
- });
- }
-
- // TODO: TLS 1.2+ has different format including
- // SignatureAndHashAlgorithm after cert types
- var b = record.fragment;
- var msg = {
- certificate_types: readVector(b, 1),
- certificate_authorities: readVector(b, 2)
- };
-
- // save certificate request in session
- c.session.certificateRequest = msg;
-
- // expect a ServerHelloDone message next
- c.expect = SHD;
-
- // continue
- c.process();
-};
-
-/**
- * Called when a server receives a CertificateVerify record.
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleCertificateVerify = function(c, record, length) {
- if(length < 2) {
- return c.error(c, {
- message: 'Invalid CertificateVerify. Message too short.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.illegal_parameter
- }
- });
- }
-
- // rewind to get full bytes for message so it can be manually
- // digested below (special case for CertificateVerify messages because
- // they must be digested *after* handling as opposed to all others)
- var b = record.fragment;
- b.read -= 4;
- var msgBytes = b.bytes();
- b.read += 4;
-
- var msg = {
- signature: readVector(b, 2).getBytes()
- };
-
- // TODO: add support for DSA
-
- // generate data to verify
- var verify = forge.util.createBuffer();
- verify.putBuffer(c.session.md5.digest());
- verify.putBuffer(c.session.sha1.digest());
- verify = verify.getBytes();
-
- try {
- var cert = c.session.clientCertificate;
- /*b = forge.pki.rsa.decrypt(
- msg.signature, cert.publicKey, true, verify.length);
- if(b !== verify) {*/
- if(!cert.publicKey.verify(verify, msg.signature, 'NONE')) {
- throw new Error('CertificateVerify signature does not match.');
- }
-
- // digest message now that it has been handled
- c.session.md5.update(msgBytes);
- c.session.sha1.update(msgBytes);
- } catch(ex) {
- return c.error(c, {
- message: 'Bad signature in CertificateVerify.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.handshake_failure
- }
- });
- }
-
- // expect ChangeCipherSpec
- c.expect = CCC;
-
- // continue
- c.process();
-};
-
-/**
- * Called when a client receives a ServerHelloDone record.
- *
- * When this message will be sent:
- * The server hello done message is sent by the server to indicate the end
- * of the server hello and associated messages. After sending this message
- * the server will wait for a client response.
- *
- * Meaning of this message:
- * This message means that the server is done sending messages to support
- * the key exchange, and the client can proceed with its phase of the key
- * exchange.
- *
- * Upon receipt of the server hello done message the client should verify
- * that the server provided a valid certificate if required and check that
- * the server hello parameters are acceptable.
- *
- * struct {} ServerHelloDone;
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleServerHelloDone = function(c, record, length) {
- // len must be 0 bytes
- if(length > 0) {
- return c.error(c, {
- message: 'Invalid ServerHelloDone message. Invalid length.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.record_overflow
- }
- });
- }
-
- if(c.serverCertificate === null) {
- // no server certificate was provided
- var error = {
- message: 'No server certificate provided. Not enough security.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.insufficient_security
- }
- };
-
- // call application callback
- var depth = 0;
- var ret = c.verify(c, error.alert.description, depth, []);
- if(ret !== true) {
- // check for custom alert info
- if(ret || ret === 0) {
- // set custom message and alert description
- if(typeof ret === 'object' && !forge.util.isArray(ret)) {
- if(ret.message) {
- error.message = ret.message;
- }
- if(ret.alert) {
- error.alert.description = ret.alert;
- }
- } else if(typeof ret === 'number') {
- // set custom alert description
- error.alert.description = ret;
- }
- }
-
- // send error
- return c.error(c, error);
- }
- }
-
- // create client certificate message if requested
- if(c.session.certificateRequest !== null) {
- record = tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createCertificate(c)
- });
- tls.queue(c, record);
- }
-
- // create client key exchange message
- record = tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createClientKeyExchange(c)
- });
- tls.queue(c, record);
-
- // expect no messages until the following callback has been called
- c.expect = SER;
-
- // create callback to handle client signature (for client-certs)
- var callback = function(c, signature) {
- if(c.session.certificateRequest !== null &&
- c.session.clientCertificate !== null) {
- // create certificate verify message
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createCertificateVerify(c, signature)
- }));
- }
-
- // create change cipher spec message
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.change_cipher_spec,
- data: tls.createChangeCipherSpec()
- }));
-
- // create pending state
- c.state.pending = tls.createConnectionState(c);
-
- // change current write state to pending write state
- c.state.current.write = c.state.pending.write;
-
- // create finished message
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createFinished(c)
- }));
-
- // expect a server ChangeCipherSpec message next
- c.expect = SCC;
-
- // send records
- tls.flush(c);
-
- // continue
- c.process();
- };
-
- // if there is no certificate request or no client certificate, do
- // callback immediately
- if(c.session.certificateRequest === null ||
- c.session.clientCertificate === null) {
- return callback(c, null);
- }
-
- // otherwise get the client signature
- tls.getClientSignature(c, callback);
-};
-
-/**
- * Called when a ChangeCipherSpec record is received.
- *
- * @param c the connection.
- * @param record the record.
- */
-tls.handleChangeCipherSpec = function(c, record) {
- if(record.fragment.getByte() !== 0x01) {
- return c.error(c, {
- message: 'Invalid ChangeCipherSpec message received.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.illegal_parameter
- }
- });
- }
-
- // create pending state if:
- // 1. Resuming session in client mode OR
- // 2. NOT resuming session in server mode
- var client = (c.entity === tls.ConnectionEnd.client);
- if((c.session.resuming && client) || (!c.session.resuming && !client)) {
- c.state.pending = tls.createConnectionState(c);
- }
-
- // change current read state to pending read state
- c.state.current.read = c.state.pending.read;
-
- // clear pending state if:
- // 1. NOT resuming session in client mode OR
- // 2. resuming a session in server mode
- if((!c.session.resuming && client) || (c.session.resuming && !client)) {
- c.state.pending = null;
- }
-
- // expect a Finished record next
- c.expect = client ? SFI : CFI;
-
- // continue
- c.process();
-};
-
-/**
- * Called when a Finished record is received.
- *
- * When this message will be sent:
- * A finished message is always sent immediately after a change
- * cipher spec message to verify that the key exchange and
- * authentication processes were successful. It is essential that a
- * change cipher spec message be received between the other
- * handshake messages and the Finished message.
- *
- * Meaning of this message:
- * The finished message is the first protected with the just-
- * negotiated algorithms, keys, and secrets. Recipients of finished
- * messages must verify that the contents are correct. Once a side
- * has sent its Finished message and received and validated the
- * Finished message from its peer, it may begin to send and receive
- * application data over the connection.
- *
- * struct {
- * opaque verify_data[verify_data_length];
- * } Finished;
- *
- * verify_data
- * PRF(master_secret, finished_label, Hash(handshake_messages))
- * [0..verify_data_length-1];
- *
- * finished_label
- * For Finished messages sent by the client, the string
- * "client finished". For Finished messages sent by the server, the
- * string "server finished".
- *
- * verify_data_length depends on the cipher suite. If it is not specified
- * by the cipher suite, then it is 12. Versions of TLS < 1.2 always used
- * 12 bytes.
- *
- * @param c the connection.
- * @param record the record.
- * @param length the length of the handshake message.
- */
-tls.handleFinished = function(c, record, length) {
- // rewind to get full bytes for message so it can be manually
- // digested below (special case for Finished messages because they
- // must be digested *after* handling as opposed to all others)
- var b = record.fragment;
- b.read -= 4;
- var msgBytes = b.bytes();
- b.read += 4;
-
- // message contains only verify_data
- var vd = record.fragment.getBytes();
-
- // ensure verify data is correct
- b = forge.util.createBuffer();
- b.putBuffer(c.session.md5.digest());
- b.putBuffer(c.session.sha1.digest());
-
- // set label based on entity type
- var client = (c.entity === tls.ConnectionEnd.client);
- var label = client ? 'server finished' : 'client finished';
-
- // TODO: determine prf function and verify length for TLS 1.2
- var sp = c.session.sp;
- var vdl = 12;
- var prf = prf_TLS1;
- b = prf(sp.master_secret, label, b.getBytes(), vdl);
- if(b.getBytes() !== vd) {
- return c.error(c, {
- message: 'Invalid verify_data in Finished message.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.decrypt_error
- }
- });
- }
-
- // digest finished message now that it has been handled
- c.session.md5.update(msgBytes);
- c.session.sha1.update(msgBytes);
-
- // resuming session as client or NOT resuming session as server
- if((c.session.resuming && client) || (!c.session.resuming && !client)) {
- // create change cipher spec message
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.change_cipher_spec,
- data: tls.createChangeCipherSpec()
- }));
-
- // change current write state to pending write state, clear pending
- c.state.current.write = c.state.pending.write;
- c.state.pending = null;
-
- // create finished message
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createFinished(c)
- }));
- }
-
- // expect application data next
- c.expect = client ? SAD : CAD;
-
- // handshake complete
- c.handshaking = false;
- ++c.handshakes;
-
- // save access to peer certificate
- c.peerCertificate = client ?
- c.session.serverCertificate : c.session.clientCertificate;
-
- // send records
- tls.flush(c);
-
- // now connected
- c.isConnected = true;
- c.connected(c);
-
- // continue
- c.process();
-};
-
-/**
- * Called when an Alert record is received.
- *
- * @param c the connection.
- * @param record the record.
- */
-tls.handleAlert = function(c, record) {
- // read alert
- var b = record.fragment;
- var alert = {
- level: b.getByte(),
- description: b.getByte()
- };
-
- // TODO: consider using a table?
- // get appropriate message
- var msg;
- switch(alert.description) {
- case tls.Alert.Description.close_notify:
- msg = 'Connection closed.';
- break;
- case tls.Alert.Description.unexpected_message:
- msg = 'Unexpected message.';
- break;
- case tls.Alert.Description.bad_record_mac:
- msg = 'Bad record MAC.';
- break;
- case tls.Alert.Description.decryption_failed:
- msg = 'Decryption failed.';
- break;
- case tls.Alert.Description.record_overflow:
- msg = 'Record overflow.';
- break;
- case tls.Alert.Description.decompression_failure:
- msg = 'Decompression failed.';
- break;
- case tls.Alert.Description.handshake_failure:
- msg = 'Handshake failure.';
- break;
- case tls.Alert.Description.bad_certificate:
- msg = 'Bad certificate.';
- break;
- case tls.Alert.Description.unsupported_certificate:
- msg = 'Unsupported certificate.';
- break;
- case tls.Alert.Description.certificate_revoked:
- msg = 'Certificate revoked.';
- break;
- case tls.Alert.Description.certificate_expired:
- msg = 'Certificate expired.';
- break;
- case tls.Alert.Description.certificate_unknown:
- msg = 'Certificate unknown.';
- break;
- case tls.Alert.Description.illegal_parameter:
- msg = 'Illegal parameter.';
- break;
- case tls.Alert.Description.unknown_ca:
- msg = 'Unknown certificate authority.';
- break;
- case tls.Alert.Description.access_denied:
- msg = 'Access denied.';
- break;
- case tls.Alert.Description.decode_error:
- msg = 'Decode error.';
- break;
- case tls.Alert.Description.decrypt_error:
- msg = 'Decrypt error.';
- break;
- case tls.Alert.Description.export_restriction:
- msg = 'Export restriction.';
- break;
- case tls.Alert.Description.protocol_version:
- msg = 'Unsupported protocol version.';
- break;
- case tls.Alert.Description.insufficient_security:
- msg = 'Insufficient security.';
- break;
- case tls.Alert.Description.internal_error:
- msg = 'Internal error.';
- break;
- case tls.Alert.Description.user_canceled:
- msg = 'User canceled.';
- break;
- case tls.Alert.Description.no_renegotiation:
- msg = 'Renegotiation not supported.';
- break;
- default:
- msg = 'Unknown error.';
- break;
- }
-
- // close connection on close_notify, not an error
- if(alert.description === tls.Alert.Description.close_notify) {
- return c.close();
- }
-
- // call error handler
- c.error(c, {
- message: msg,
- send: false,
- // origin is the opposite end
- origin: (c.entity === tls.ConnectionEnd.client) ? 'server' : 'client',
- alert: alert
- });
-
- // continue
- c.process();
-};
-
-/**
- * Called when a Handshake record is received.
- *
- * @param c the connection.
- * @param record the record.
- */
-tls.handleHandshake = function(c, record) {
- // get the handshake type and message length
- var b = record.fragment;
- var type = b.getByte();
- var length = b.getInt24();
-
- // see if the record fragment doesn't yet contain the full message
- if(length > b.length()) {
- // cache the record, clear its fragment, and reset the buffer read
- // pointer before the type and length were read
- c.fragmented = record;
- record.fragment = forge.util.createBuffer();
- b.read -= 4;
-
- // continue
- return c.process();
- }
-
- // full message now available, clear cache, reset read pointer to
- // before type and length
- c.fragmented = null;
- b.read -= 4;
-
- // save the handshake bytes for digestion after handler is found
- // (include type and length of handshake msg)
- var bytes = b.bytes(length + 4);
-
- // restore read pointer
- b.read += 4;
-
- // handle expected message
- if(type in hsTable[c.entity][c.expect]) {
- // initialize server session
- if(c.entity === tls.ConnectionEnd.server && !c.open && !c.fail) {
- c.handshaking = true;
- c.session = {
- version: null,
- extensions: {
- server_name: {
- serverNameList: []
- }
- },
- cipherSuite: null,
- compressionMethod: null,
- serverCertificate: null,
- clientCertificate: null,
- md5: forge.md.md5.create(),
- sha1: forge.md.sha1.create()
- };
- }
-
- /* Update handshake messages digest. Finished and CertificateVerify
- messages are not digested here. They can't be digested as part of
- the verify_data that they contain. These messages are manually
- digested in their handlers. HelloRequest messages are simply never
- included in the handshake message digest according to spec. */
- if(type !== tls.HandshakeType.hello_request &&
- type !== tls.HandshakeType.certificate_verify &&
- type !== tls.HandshakeType.finished) {
- c.session.md5.update(bytes);
- c.session.sha1.update(bytes);
- }
-
- // handle specific handshake type record
- hsTable[c.entity][c.expect][type](c, record, length);
- } else {
- // unexpected record
- tls.handleUnexpected(c, record);
- }
-};
-
-/**
- * Called when an ApplicationData record is received.
- *
- * @param c the connection.
- * @param record the record.
- */
-tls.handleApplicationData = function(c, record) {
- // buffer data, notify that its ready
- c.data.putBuffer(record.fragment);
- c.dataReady(c);
-
- // continue
- c.process();
-};
-
-/**
- * Called when a Heartbeat record is received.
- *
- * @param c the connection.
- * @param record the record.
- */
-tls.handleHeartbeat = function(c, record) {
- // get the heartbeat type and payload
- var b = record.fragment;
- var type = b.getByte();
- var length = b.getInt16();
- var payload = b.getBytes(length);
-
- if(type === tls.HeartbeatMessageType.heartbeat_request) {
- // discard request during handshake or if length is too large
- if(c.handshaking || length > payload.length) {
- // continue
- return c.process();
- }
- // retransmit payload
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.heartbeat,
- data: tls.createHeartbeat(
- tls.HeartbeatMessageType.heartbeat_response, payload)
- }));
- tls.flush(c);
- } else if(type === tls.HeartbeatMessageType.heartbeat_response) {
- // check payload against expected payload, discard heartbeat if no match
- if(payload !== c.expectedHeartbeatPayload) {
- // continue
- return c.process();
- }
-
- // notify that a valid heartbeat was received
- if(c.heartbeatReceived) {
- c.heartbeatReceived(c, forge.util.createBuffer(payload));
- }
- }
-
- // continue
- c.process();
-};
-
-/**
- * The transistional state tables for receiving TLS records. It maps the
- * current TLS engine state and a received record to a function to handle the
- * record and update the state.
- *
- * For instance, if the current state is SHE, then the TLS engine is expecting
- * a ServerHello record. Once a record is received, the handler function is
- * looked up using the state SHE and the record's content type.
- *
- * The resulting function will either be an error handler or a record handler.
- * The function will take whatever action is appropriate and update the state
- * for the next record.
- *
- * The states are all based on possible server record types. Note that the
- * client will never specifically expect to receive a HelloRequest or an alert
- * from the server so there is no state that reflects this. These messages may
- * occur at any time.
- *
- * There are two tables for mapping states because there is a second tier of
- * types for handshake messages. Once a record with a content type of handshake
- * is received, the handshake record handler will look up the handshake type in
- * the secondary map to get its appropriate handler.
- *
- * Valid message orders are as follows:
- *
- * =======================FULL HANDSHAKE======================
- * Client Server
- *
- * ClientHello -------->
- * ServerHello
- * Certificate*
- * ServerKeyExchange*
- * CertificateRequest*
- * <-------- ServerHelloDone
- * Certificate*
- * ClientKeyExchange
- * CertificateVerify*
- * [ChangeCipherSpec]
- * Finished -------->
- * [ChangeCipherSpec]
- * <-------- Finished
- * Application Data <-------> Application Data
- *
- * =====================SESSION RESUMPTION=====================
- * Client Server
- *
- * ClientHello -------->
- * ServerHello
- * [ChangeCipherSpec]
- * <-------- Finished
- * [ChangeCipherSpec]
- * Finished -------->
- * Application Data <-------> Application Data
- */
-// client expect states (indicate which records are expected to be received)
-var SHE = 0; // rcv server hello
-var SCE = 1; // rcv server certificate
-var SKE = 2; // rcv server key exchange
-var SCR = 3; // rcv certificate request
-var SHD = 4; // rcv server hello done
-var SCC = 5; // rcv change cipher spec
-var SFI = 6; // rcv finished
-var SAD = 7; // rcv application data
-var SER = 8; // not expecting any messages at this point
-
-// server expect states
-var CHE = 0; // rcv client hello
-var CCE = 1; // rcv client certificate
-var CKE = 2; // rcv client key exchange
-var CCV = 3; // rcv certificate verify
-var CCC = 4; // rcv change cipher spec
-var CFI = 5; // rcv finished
-var CAD = 6; // rcv application data
-var CER = 7; // not expecting any messages at this point
-
-// map client current expect state and content type to function
-var __ = tls.handleUnexpected;
-var R0 = tls.handleChangeCipherSpec;
-var R1 = tls.handleAlert;
-var R2 = tls.handleHandshake;
-var R3 = tls.handleApplicationData;
-var R4 = tls.handleHeartbeat;
-var ctTable = [];
-ctTable[tls.ConnectionEnd.client] = [
-// CC,AL,HS,AD,HB
-/*SHE*/[__,R1,R2,__,R4],
-/*SCE*/[__,R1,R2,__,R4],
-/*SKE*/[__,R1,R2,__,R4],
-/*SCR*/[__,R1,R2,__,R4],
-/*SHD*/[__,R1,R2,__,R4],
-/*SCC*/[R0,R1,__,__,R4],
-/*SFI*/[__,R1,R2,__,R4],
-/*SAD*/[__,R1,R2,R3,R4],
-/*SER*/[__,R1,R2,__,R4]
-];
-
-// map server current expect state and content type to function
-ctTable[tls.ConnectionEnd.server] = [
-// CC,AL,HS,AD
-/*CHE*/[__,R1,R2,__,R4],
-/*CCE*/[__,R1,R2,__,R4],
-/*CKE*/[__,R1,R2,__,R4],
-/*CCV*/[__,R1,R2,__,R4],
-/*CCC*/[R0,R1,__,__,R4],
-/*CFI*/[__,R1,R2,__,R4],
-/*CAD*/[__,R1,R2,R3,R4],
-/*CER*/[__,R1,R2,__,R4]
-];
-
-// map client current expect state and handshake type to function
-var H0 = tls.handleHelloRequest;
-var H1 = tls.handleServerHello;
-var H2 = tls.handleCertificate;
-var H3 = tls.handleServerKeyExchange;
-var H4 = tls.handleCertificateRequest;
-var H5 = tls.handleServerHelloDone;
-var H6 = tls.handleFinished;
-var hsTable = [];
-hsTable[tls.ConnectionEnd.client] = [
-// HR,01,SH,03,04,05,06,07,08,09,10,SC,SK,CR,HD,15,CK,17,18,19,FI
-/*SHE*/[__,__,H1,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
-/*SCE*/[H0,__,__,__,__,__,__,__,__,__,__,H2,H3,H4,H5,__,__,__,__,__,__],
-/*SKE*/[H0,__,__,__,__,__,__,__,__,__,__,__,H3,H4,H5,__,__,__,__,__,__],
-/*SCR*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,H4,H5,__,__,__,__,__,__],
-/*SHD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,H5,__,__,__,__,__,__],
-/*SCC*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
-/*SFI*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6],
-/*SAD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
-/*SER*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__]
-];
-
-// map server current expect state and handshake type to function
-// Note: CAD[CH] does not map to FB because renegotation is prohibited
-var H7 = tls.handleClientHello;
-var H8 = tls.handleClientKeyExchange;
-var H9 = tls.handleCertificateVerify;
-hsTable[tls.ConnectionEnd.server] = [
-// 01,CH,02,03,04,05,06,07,08,09,10,CC,12,13,14,CV,CK,17,18,19,FI
-/*CHE*/[__,H7,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
-/*CCE*/[__,__,__,__,__,__,__,__,__,__,__,H2,__,__,__,__,__,__,__,__,__],
-/*CKE*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H8,__,__,__,__],
-/*CCV*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H9,__,__,__,__,__],
-/*CCC*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
-/*CFI*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6],
-/*CAD*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
-/*CER*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__]
-];
-
-/**
- * Generates the master_secret and keys using the given security parameters.
- *
- * The security parameters for a TLS connection state are defined as such:
- *
- * struct {
- * ConnectionEnd entity;
- * PRFAlgorithm prf_algorithm;
- * BulkCipherAlgorithm bulk_cipher_algorithm;
- * CipherType cipher_type;
- * uint8 enc_key_length;
- * uint8 block_length;
- * uint8 fixed_iv_length;
- * uint8 record_iv_length;
- * MACAlgorithm mac_algorithm;
- * uint8 mac_length;
- * uint8 mac_key_length;
- * CompressionMethod compression_algorithm;
- * opaque master_secret[48];
- * opaque client_random[32];
- * opaque server_random[32];
- * } SecurityParameters;
- *
- * Note that this definition is from TLS 1.2. In TLS 1.0 some of these
- * parameters are ignored because, for instance, the PRFAlgorithm is a
- * builtin-fixed algorithm combining iterations of MD5 and SHA-1 in TLS 1.0.
- *
- * The Record Protocol requires an algorithm to generate keys required by the
- * current connection state.
- *
- * The master secret is expanded into a sequence of secure bytes, which is then
- * split to a client write MAC key, a server write MAC key, a client write
- * encryption key, and a server write encryption key. In TLS 1.0 a client write
- * IV and server write IV are also generated. Each of these is generated from
- * the byte sequence in that order. Unused values are empty. In TLS 1.2, some
- * AEAD ciphers may additionally require a client write IV and a server write
- * IV (see Section 6.2.3.3).
- *
- * When keys, MAC keys, and IVs are generated, the master secret is used as an
- * entropy source.
- *
- * To generate the key material, compute:
- *
- * master_secret = PRF(pre_master_secret, "master secret",
- * ClientHello.random + ServerHello.random)
- *
- * key_block = PRF(SecurityParameters.master_secret,
- * "key expansion",
- * SecurityParameters.server_random +
- * SecurityParameters.client_random);
- *
- * until enough output has been generated. Then, the key_block is
- * partitioned as follows:
- *
- * client_write_MAC_key[SecurityParameters.mac_key_length]
- * server_write_MAC_key[SecurityParameters.mac_key_length]
- * client_write_key[SecurityParameters.enc_key_length]
- * server_write_key[SecurityParameters.enc_key_length]
- * client_write_IV[SecurityParameters.fixed_iv_length]
- * server_write_IV[SecurityParameters.fixed_iv_length]
- *
- * In TLS 1.2, the client_write_IV and server_write_IV are only generated for
- * implicit nonce techniques as described in Section 3.2.1 of [AEAD]. This
- * implementation uses TLS 1.0 so IVs are generated.
- *
- * Implementation note: The currently defined cipher suite which requires the
- * most material is AES_256_CBC_SHA256. It requires 2 x 32 byte keys and 2 x 32
- * byte MAC keys, for a total 128 bytes of key material. In TLS 1.0 it also
- * requires 2 x 16 byte IVs, so it actually takes 160 bytes of key material.
- *
- * @param c the connection.
- * @param sp the security parameters to use.
- *
- * @return the security keys.
- */
-tls.generateKeys = function(c, sp) {
- // TLS_RSA_WITH_AES_128_CBC_SHA (required to be compliant with TLS 1.2) &
- // TLS_RSA_WITH_AES_256_CBC_SHA are the only cipher suites implemented
- // at present
-
- // TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is required to be compliant with
- // TLS 1.0 but we don't care right now because AES is better and we have
- // an implementation for it
-
- // TODO: TLS 1.2 implementation
- /*
- // determine the PRF
- var prf;
- switch(sp.prf_algorithm) {
- case tls.PRFAlgorithm.tls_prf_sha256:
- prf = prf_sha256;
- break;
- default:
- // should never happen
- throw new Error('Invalid PRF');
- }
- */
-
- // TLS 1.0/1.1 implementation
- var prf = prf_TLS1;
-
- // concatenate server and client random
- var random = sp.client_random + sp.server_random;
-
- // only create master secret if session is new
- if(!c.session.resuming) {
- // create master secret, clean up pre-master secret
- sp.master_secret = prf(
- sp.pre_master_secret, 'master secret', random, 48).bytes();
- sp.pre_master_secret = null;
- }
-
- // generate the amount of key material needed
- random = sp.server_random + sp.client_random;
- var length = 2 * sp.mac_key_length + 2 * sp.enc_key_length;
-
- // include IV for TLS/1.0
- var tls10 = (c.version.major === tls.Versions.TLS_1_0.major &&
- c.version.minor === tls.Versions.TLS_1_0.minor);
- if(tls10) {
- length += 2 * sp.fixed_iv_length;
- }
- var km = prf(sp.master_secret, 'key expansion', random, length);
-
- // split the key material into the MAC and encryption keys
- var rval = {
- client_write_MAC_key: km.getBytes(sp.mac_key_length),
- server_write_MAC_key: km.getBytes(sp.mac_key_length),
- client_write_key: km.getBytes(sp.enc_key_length),
- server_write_key: km.getBytes(sp.enc_key_length)
- };
-
- // include TLS 1.0 IVs
- if(tls10) {
- rval.client_write_IV = km.getBytes(sp.fixed_iv_length);
- rval.server_write_IV = km.getBytes(sp.fixed_iv_length);
- }
-
- return rval;
-};
-
-/**
- * Creates a new initialized TLS connection state. A connection state has
- * a read mode and a write mode.
- *
- * compression state:
- * The current state of the compression algorithm.
- *
- * cipher state:
- * The current state of the encryption algorithm. This will consist of the
- * scheduled key for that connection. For stream ciphers, this will also
- * contain whatever state information is necessary to allow the stream to
- * continue to encrypt or decrypt data.
- *
- * MAC key:
- * The MAC key for the connection.
- *
- * sequence number:
- * Each connection state contains a sequence number, which is maintained
- * separately for read and write states. The sequence number MUST be set to
- * zero whenever a connection state is made the active state. Sequence
- * numbers are of type uint64 and may not exceed 2^64-1. Sequence numbers do
- * not wrap. If a TLS implementation would need to wrap a sequence number,
- * it must renegotiate instead. A sequence number is incremented after each
- * record: specifically, the first record transmitted under a particular
- * connection state MUST use sequence number 0.
- *
- * @param c the connection.
- *
- * @return the new initialized TLS connection state.
- */
-tls.createConnectionState = function(c) {
- var client = (c.entity === tls.ConnectionEnd.client);
-
- var createMode = function() {
- var mode = {
- // two 32-bit numbers, first is most significant
- sequenceNumber: [0, 0],
- macKey: null,
- macLength: 0,
- macFunction: null,
- cipherState: null,
- cipherFunction: function(record) {return true;},
- compressionState: null,
- compressFunction: function(record) {return true;},
- updateSequenceNumber: function() {
- if(mode.sequenceNumber[1] === 0xFFFFFFFF) {
- mode.sequenceNumber[1] = 0;
- ++mode.sequenceNumber[0];
- } else {
- ++mode.sequenceNumber[1];
- }
- }
- };
- return mode;
- };
- var state = {
- read: createMode(),
- write: createMode()
- };
-
- // update function in read mode will decrypt then decompress a record
- state.read.update = function(c, record) {
- if(!state.read.cipherFunction(record, state.read)) {
- c.error(c, {
- message: 'Could not decrypt record or bad MAC.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- // doesn't matter if decryption failed or MAC was
- // invalid, return the same error so as not to reveal
- // which one occurred
- description: tls.Alert.Description.bad_record_mac
- }
- });
- } else if(!state.read.compressFunction(c, record, state.read)) {
- c.error(c, {
- message: 'Could not decompress record.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.decompression_failure
- }
- });
- }
- return !c.fail;
- };
-
- // update function in write mode will compress then encrypt a record
- state.write.update = function(c, record) {
- if(!state.write.compressFunction(c, record, state.write)) {
- // error, but do not send alert since it would require
- // compression as well
- c.error(c, {
- message: 'Could not compress record.',
- send: false,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.internal_error
- }
- });
- } else if(!state.write.cipherFunction(record, state.write)) {
- // error, but do not send alert since it would require
- // encryption as well
- c.error(c, {
- message: 'Could not encrypt record.',
- send: false,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.internal_error
- }
- });
- }
- return !c.fail;
- };
-
- // handle security parameters
- if(c.session) {
- var sp = c.session.sp;
- c.session.cipherSuite.initSecurityParameters(sp);
-
- // generate keys
- sp.keys = tls.generateKeys(c, sp);
- state.read.macKey = client ?
- sp.keys.server_write_MAC_key : sp.keys.client_write_MAC_key;
- state.write.macKey = client ?
- sp.keys.client_write_MAC_key : sp.keys.server_write_MAC_key;
-
- // cipher suite setup
- c.session.cipherSuite.initConnectionState(state, c, sp);
-
- // compression setup
- switch(sp.compression_algorithm) {
- case tls.CompressionMethod.none:
- break;
- case tls.CompressionMethod.deflate:
- state.read.compressFunction = inflate;
- state.write.compressFunction = deflate;
- break;
- default:
- throw new Error('Unsupported compression algorithm.');
- }
- }
-
- return state;
-};
-
-/**
- * Creates a Random structure.
- *
- * struct {
- * uint32 gmt_unix_time;
- * opaque random_bytes[28];
- * } Random;
- *
- * gmt_unix_time:
- * The current time and date in standard UNIX 32-bit format (seconds since
- * the midnight starting Jan 1, 1970, UTC, ignoring leap seconds) according
- * to the sender's internal clock. Clocks are not required to be set
- * correctly by the basic TLS protocol; higher-level or application
- * protocols may define additional requirements. Note that, for historical
- * reasons, the data element is named using GMT, the predecessor of the
- * current worldwide time base, UTC.
- * random_bytes:
- * 28 bytes generated by a secure random number generator.
- *
- * @return the Random structure as a byte array.
- */
-tls.createRandom = function() {
- // get UTC milliseconds
- var d = new Date();
- var utc = +d + d.getTimezoneOffset() * 60000;
- var rval = forge.util.createBuffer();
- rval.putInt32(utc);
- rval.putBytes(forge.random.getBytes(28));
- return rval;
-};
-
-/**
- * Creates a TLS record with the given type and data.
- *
- * @param c the connection.
- * @param options:
- * type: the record type.
- * data: the plain text data in a byte buffer.
- *
- * @return the created record.
- */
-tls.createRecord = function(c, options) {
- if(!options.data) {
- return null;
- }
- var record = {
- type: options.type,
- version: {
- major: c.version.major,
- minor: c.version.minor
- },
- length: options.data.length(),
- fragment: options.data
- };
- return record;
-};
-
-/**
- * Creates a TLS alert record.
- *
- * @param c the connection.
- * @param alert:
- * level: the TLS alert level.
- * description: the TLS alert description.
- *
- * @return the created alert record.
- */
-tls.createAlert = function(c, alert) {
- var b = forge.util.createBuffer();
- b.putByte(alert.level);
- b.putByte(alert.description);
- return tls.createRecord(c, {
- type: tls.ContentType.alert,
- data: b
- });
-};
-
-/* The structure of a TLS handshake message.
- *
- * struct {
- * HandshakeType msg_type; // handshake type
- * uint24 length; // bytes in message
- * select(HandshakeType) {
- * case hello_request: HelloRequest;
- * case client_hello: ClientHello;
- * case server_hello: ServerHello;
- * case certificate: Certificate;
- * case server_key_exchange: ServerKeyExchange;
- * case certificate_request: CertificateRequest;
- * case server_hello_done: ServerHelloDone;
- * case certificate_verify: CertificateVerify;
- * case client_key_exchange: ClientKeyExchange;
- * case finished: Finished;
- * } body;
- * } Handshake;
- */
-
-/**
- * Creates a ClientHello message.
- *
- * opaque SessionID<0..32>;
- * enum { null(0), deflate(1), (255) } CompressionMethod;
- * uint8 CipherSuite[2];
- *
- * struct {
- * ProtocolVersion client_version;
- * Random random;
- * SessionID session_id;
- * CipherSuite cipher_suites<2..2^16-2>;
- * CompressionMethod compression_methods<1..2^8-1>;
- * select(extensions_present) {
- * case false:
- * struct {};
- * case true:
- * Extension extensions<0..2^16-1>;
- * };
- * } ClientHello;
- *
- * The extension format for extended client hellos and server hellos is:
- *
- * struct {
- * ExtensionType extension_type;
- * opaque extension_data<0..2^16-1>;
- * } Extension;
- *
- * Here:
- *
- * - "extension_type" identifies the particular extension type.
- * - "extension_data" contains information specific to the particular
- * extension type.
- *
- * The extension types defined in this document are:
- *
- * enum {
- * server_name(0), max_fragment_length(1),
- * client_certificate_url(2), trusted_ca_keys(3),
- * truncated_hmac(4), status_request(5), (65535)
- * } ExtensionType;
- *
- * @param c the connection.
- *
- * @return the ClientHello byte buffer.
- */
-tls.createClientHello = function(c) {
- // save hello version
- c.session.clientHelloVersion = {
- major: c.version.major,
- minor: c.version.minor
- };
-
- // create supported cipher suites
- var cipherSuites = forge.util.createBuffer();
- for(var i = 0; i < c.cipherSuites.length; ++i) {
- var cs = c.cipherSuites[i];
- cipherSuites.putByte(cs.id[0]);
- cipherSuites.putByte(cs.id[1]);
- }
- var cSuites = cipherSuites.length();
-
- // create supported compression methods, null always supported, but
- // also support deflate if connection has inflate and deflate methods
- var compressionMethods = forge.util.createBuffer();
- compressionMethods.putByte(tls.CompressionMethod.none);
- // FIXME: deflate support disabled until issues with raw deflate data
- // without zlib headers are resolved
- /*
- if(c.inflate !== null && c.deflate !== null) {
- compressionMethods.putByte(tls.CompressionMethod.deflate);
- }
- */
- var cMethods = compressionMethods.length();
-
- // create TLS SNI (server name indication) extension if virtual host
- // has been specified, see RFC 3546
- var extensions = forge.util.createBuffer();
- if(c.virtualHost) {
- // create extension struct
- var ext = forge.util.createBuffer();
- ext.putByte(0x00); // type server_name (ExtensionType is 2 bytes)
- ext.putByte(0x00);
-
- /* In order to provide the server name, clients MAY include an
- * extension of type "server_name" in the (extended) client hello.
- * The "extension_data" field of this extension SHALL contain
- * "ServerNameList" where:
- *
- * struct {
- * NameType name_type;
- * select(name_type) {
- * case host_name: HostName;
- * } name;
- * } ServerName;
- *
- * enum {
- * host_name(0), (255)
- * } NameType;
- *
- * opaque HostName<1..2^16-1>;
- *
- * struct {
- * ServerName server_name_list<1..2^16-1>
- * } ServerNameList;
- */
- var serverName = forge.util.createBuffer();
- serverName.putByte(0x00); // type host_name
- writeVector(serverName, 2, forge.util.createBuffer(c.virtualHost));
-
- // ServerNameList is in extension_data
- var snList = forge.util.createBuffer();
- writeVector(snList, 2, serverName);
- writeVector(ext, 2, snList);
- extensions.putBuffer(ext);
- }
- var extLength = extensions.length();
- if(extLength > 0) {
- // add extension vector length
- extLength += 2;
- }
-
- // determine length of the handshake message
- // cipher suites and compression methods size will need to be
- // updated if more get added to the list
- var sessionId = c.session.id;
- var length =
- sessionId.length + 1 + // session ID vector
- 2 + // version (major + minor)
- 4 + 28 + // random time and random bytes
- 2 + cSuites + // cipher suites vector
- 1 + cMethods + // compression methods vector
- extLength; // extensions vector
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.client_hello);
- rval.putInt24(length); // handshake length
- rval.putByte(c.version.major); // major version
- rval.putByte(c.version.minor); // minor version
- rval.putBytes(c.session.sp.client_random); // random time + bytes
- writeVector(rval, 1, forge.util.createBuffer(sessionId));
- writeVector(rval, 2, cipherSuites);
- writeVector(rval, 1, compressionMethods);
- if(extLength > 0) {
- writeVector(rval, 2, extensions);
- }
- return rval;
-};
-
-/**
- * Creates a ServerHello message.
- *
- * @param c the connection.
- *
- * @return the ServerHello byte buffer.
- */
-tls.createServerHello = function(c) {
- // determine length of the handshake message
- var sessionId = c.session.id;
- var length =
- sessionId.length + 1 + // session ID vector
- 2 + // version (major + minor)
- 4 + 28 + // random time and random bytes
- 2 + // chosen cipher suite
- 1; // chosen compression method
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.server_hello);
- rval.putInt24(length); // handshake length
- rval.putByte(c.version.major); // major version
- rval.putByte(c.version.minor); // minor version
- rval.putBytes(c.session.sp.server_random); // random time + bytes
- writeVector(rval, 1, forge.util.createBuffer(sessionId));
- rval.putByte(c.session.cipherSuite.id[0]);
- rval.putByte(c.session.cipherSuite.id[1]);
- rval.putByte(c.session.compressionMethod);
- return rval;
-};
-
-/**
- * Creates a Certificate message.
- *
- * When this message will be sent:
- * This is the first message the client can send after receiving a server
- * hello done message and the first message the server can send after
- * sending a ServerHello. This client message is only sent if the server
- * requests a certificate. If no suitable certificate is available, the
- * client should send a certificate message containing no certificates. If
- * client authentication is required by the server for the handshake to
- * continue, it may respond with a fatal handshake failure alert.
- *
- * opaque ASN.1Cert<1..2^24-1>;
- *
- * struct {
- * ASN.1Cert certificate_list<0..2^24-1>;
- * } Certificate;
- *
- * @param c the connection.
- *
- * @return the Certificate byte buffer.
- */
-tls.createCertificate = function(c) {
- // TODO: check certificate request to ensure types are supported
-
- // get a certificate (a certificate as a PEM string)
- var client = (c.entity === tls.ConnectionEnd.client);
- var cert = null;
- if(c.getCertificate) {
- var hint;
- if(client) {
- hint = c.session.certificateRequest;
- } else {
- hint = c.session.extensions.server_name.serverNameList;
- }
- cert = c.getCertificate(c, hint);
- }
-
- // buffer to hold certificate list
- var certList = forge.util.createBuffer();
- if(cert !== null) {
- try {
- // normalize cert to a chain of certificates
- if(!forge.util.isArray(cert)) {
- cert = [cert];
- }
- var asn1 = null;
- for(var i = 0; i < cert.length; ++i) {
- var msg = forge.pem.decode(cert[i])[0];
- if(msg.type !== 'CERTIFICATE' &&
- msg.type !== 'X509 CERTIFICATE' &&
- msg.type !== 'TRUSTED CERTIFICATE') {
- var error = new Error('Could not convert certificate from PEM; PEM ' +
- 'header type is not "CERTIFICATE", "X509 CERTIFICATE", or ' +
- '"TRUSTED CERTIFICATE".');
- error.headerType = msg.type;
- throw error;
- }
- if(msg.procType && msg.procType.type === 'ENCRYPTED') {
- throw new Error('Could not convert certificate from PEM; PEM is encrypted.');
- }
-
- var der = forge.util.createBuffer(msg.body);
- if(asn1 === null) {
- asn1 = forge.asn1.fromDer(der.bytes(), false);
- }
-
- // certificate entry is itself a vector with 3 length bytes
- var certBuffer = forge.util.createBuffer();
- writeVector(certBuffer, 3, der);
-
- // add cert vector to cert list vector
- certList.putBuffer(certBuffer);
- }
-
- // save certificate
- cert = forge.pki.certificateFromAsn1(asn1);
- if(client) {
- c.session.clientCertificate = cert;
- } else {
- c.session.serverCertificate = cert;
- }
- } catch(ex) {
- return c.error(c, {
- message: 'Could not send certificate list.',
- cause: ex,
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.bad_certificate
- }
- });
- }
- }
-
- // determine length of the handshake message
- var length = 3 + certList.length(); // cert list vector
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.certificate);
- rval.putInt24(length);
- writeVector(rval, 3, certList);
- return rval;
-};
-
-/**
- * Creates a ClientKeyExchange message.
- *
- * When this message will be sent:
- * This message is always sent by the client. It will immediately follow the
- * client certificate message, if it is sent. Otherwise it will be the first
- * message sent by the client after it receives the server hello done
- * message.
- *
- * Meaning of this message:
- * With this message, the premaster secret is set, either though direct
- * transmission of the RSA-encrypted secret, or by the transmission of
- * Diffie-Hellman parameters which will allow each side to agree upon the
- * same premaster secret. When the key exchange method is DH_RSA or DH_DSS,
- * client certification has been requested, and the client was able to
- * respond with a certificate which contained a Diffie-Hellman public key
- * whose parameters (group and generator) matched those specified by the
- * server in its certificate, this message will not contain any data.
- *
- * Meaning of this message:
- * If RSA is being used for key agreement and authentication, the client
- * generates a 48-byte premaster secret, encrypts it using the public key
- * from the server's certificate or the temporary RSA key provided in a
- * server key exchange message, and sends the result in an encrypted
- * premaster secret message. This structure is a variant of the client
- * key exchange message, not a message in itself.
- *
- * struct {
- * select(KeyExchangeAlgorithm) {
- * case rsa: EncryptedPreMasterSecret;
- * case diffie_hellman: ClientDiffieHellmanPublic;
- * } exchange_keys;
- * } ClientKeyExchange;
- *
- * struct {
- * ProtocolVersion client_version;
- * opaque random[46];
- * } PreMasterSecret;
- *
- * struct {
- * public-key-encrypted PreMasterSecret pre_master_secret;
- * } EncryptedPreMasterSecret;
- *
- * A public-key-encrypted element is encoded as a vector <0..2^16-1>.
- *
- * @param c the connection.
- *
- * @return the ClientKeyExchange byte buffer.
- */
-tls.createClientKeyExchange = function(c) {
- // create buffer to encrypt
- var b = forge.util.createBuffer();
-
- // add highest client-supported protocol to help server avoid version
- // rollback attacks
- b.putByte(c.session.clientHelloVersion.major);
- b.putByte(c.session.clientHelloVersion.minor);
-
- // generate and add 46 random bytes
- b.putBytes(forge.random.getBytes(46));
-
- // save pre-master secret
- var sp = c.session.sp;
- sp.pre_master_secret = b.getBytes();
-
- // RSA-encrypt the pre-master secret
- var key = c.session.serverCertificate.publicKey;
- b = key.encrypt(sp.pre_master_secret);
-
- /* Note: The encrypted pre-master secret will be stored in a
- public-key-encrypted opaque vector that has the length prefixed using
- 2 bytes, so include those 2 bytes in the handshake message length. This
- is done as a minor optimization instead of calling writeVector(). */
-
- // determine length of the handshake message
- var length = b.length + 2;
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.client_key_exchange);
- rval.putInt24(length);
- // add vector length bytes
- rval.putInt16(b.length);
- rval.putBytes(b);
- return rval;
-};
-
-/**
- * Creates a ServerKeyExchange message.
- *
- * @param c the connection.
- *
- * @return the ServerKeyExchange byte buffer.
- */
-tls.createServerKeyExchange = function(c) {
- // this implementation only supports RSA, no Diffie-Hellman support,
- // so this record is empty
-
- // determine length of the handshake message
- var length = 0;
-
- // build record fragment
- var rval = forge.util.createBuffer();
- if(length > 0) {
- rval.putByte(tls.HandshakeType.server_key_exchange);
- rval.putInt24(length);
- }
- return rval;
-};
-
-/**
- * Gets the signed data used to verify a client-side certificate. See
- * tls.createCertificateVerify() for details.
- *
- * @param c the connection.
- * @param callback the callback to call once the signed data is ready.
- */
-tls.getClientSignature = function(c, callback) {
- // generate data to RSA encrypt
- var b = forge.util.createBuffer();
- b.putBuffer(c.session.md5.digest());
- b.putBuffer(c.session.sha1.digest());
- b = b.getBytes();
-
- // create default signing function as necessary
- c.getSignature = c.getSignature || function(c, b, callback) {
- // do rsa encryption, call callback
- var privateKey = null;
- if(c.getPrivateKey) {
- try {
- privateKey = c.getPrivateKey(c, c.session.clientCertificate);
- privateKey = forge.pki.privateKeyFromPem(privateKey);
- } catch(ex) {
- c.error(c, {
- message: 'Could not get private key.',
- cause: ex,
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.internal_error
- }
- });
- }
- }
- if(privateKey === null) {
- c.error(c, {
- message: 'No private key set.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.internal_error
- }
- });
- } else {
- b = privateKey.sign(b, null);
- }
- callback(c, b);
- };
-
- // get client signature
- c.getSignature(c, b, callback);
-};
-
-/**
- * Creates a CertificateVerify message.
- *
- * Meaning of this message:
- * This structure conveys the client's Diffie-Hellman public value
- * (Yc) if it was not already included in the client's certificate.
- * The encoding used for Yc is determined by the enumerated
- * PublicValueEncoding. This structure is a variant of the client
- * key exchange message, not a message in itself.
- *
- * When this message will be sent:
- * This message is used to provide explicit verification of a client
- * certificate. This message is only sent following a client
- * certificate that has signing capability (i.e. all certificates
- * except those containing fixed Diffie-Hellman parameters). When
- * sent, it will immediately follow the client key exchange message.
- *
- * struct {
- * Signature signature;
- * } CertificateVerify;
- *
- * CertificateVerify.signature.md5_hash
- * MD5(handshake_messages);
- *
- * Certificate.signature.sha_hash
- * SHA(handshake_messages);
- *
- * Here handshake_messages refers to all handshake messages sent or
- * received starting at client hello up to but not including this
- * message, including the type and length fields of the handshake
- * messages.
- *
- * select(SignatureAlgorithm) {
- * case anonymous: struct { };
- * case rsa:
- * digitally-signed struct {
- * opaque md5_hash[16];
- * opaque sha_hash[20];
- * };
- * case dsa:
- * digitally-signed struct {
- * opaque sha_hash[20];
- * };
- * } Signature;
- *
- * In digital signing, one-way hash functions are used as input for a
- * signing algorithm. A digitally-signed element is encoded as an opaque
- * vector <0..2^16-1>, where the length is specified by the signing
- * algorithm and key.
- *
- * In RSA signing, a 36-byte structure of two hashes (one SHA and one
- * MD5) is signed (encrypted with the private key). It is encoded with
- * PKCS #1 block type 0 or type 1 as described in [PKCS1].
- *
- * In DSS, the 20 bytes of the SHA hash are run directly through the
- * Digital Signing Algorithm with no additional hashing.
- *
- * @param c the connection.
- * @param signature the signature to include in the message.
- *
- * @return the CertificateVerify byte buffer.
- */
-tls.createCertificateVerify = function(c, signature) {
- /* Note: The signature will be stored in a "digitally-signed" opaque
- vector that has the length prefixed using 2 bytes, so include those
- 2 bytes in the handshake message length. This is done as a minor
- optimization instead of calling writeVector(). */
-
- // determine length of the handshake message
- var length = signature.length + 2;
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.certificate_verify);
- rval.putInt24(length);
- // add vector length bytes
- rval.putInt16(signature.length);
- rval.putBytes(signature);
- return rval;
-};
-
-/**
- * Creates a CertificateRequest message.
- *
- * @param c the connection.
- *
- * @return the CertificateRequest byte buffer.
- */
-tls.createCertificateRequest = function(c) {
- // TODO: support other certificate types
- var certTypes = forge.util.createBuffer();
-
- // common RSA certificate type
- certTypes.putByte(0x01);
-
- // TODO: verify that this data format is correct
- // add distinguished names from CA store
- var cAs = forge.util.createBuffer();
- for(var key in c.caStore.certs) {
- var cert = c.caStore.certs[key];
- var dn = forge.pki.distinguishedNameToAsn1(cert.subject);
- cAs.putBuffer(forge.asn1.toDer(dn));
- }
-
- // TODO: TLS 1.2+ has a different format
-
- // determine length of the handshake message
- var length =
- 1 + certTypes.length() +
- 2 + cAs.length();
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.certificate_request);
- rval.putInt24(length);
- writeVector(rval, 1, certTypes);
- writeVector(rval, 2, cAs);
- return rval;
-};
-
-/**
- * Creates a ServerHelloDone message.
- *
- * @param c the connection.
- *
- * @return the ServerHelloDone byte buffer.
- */
-tls.createServerHelloDone = function(c) {
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.server_hello_done);
- rval.putInt24(0);
- return rval;
-};
-
-/**
- * Creates a ChangeCipherSpec message.
- *
- * The change cipher spec protocol exists to signal transitions in
- * ciphering strategies. The protocol consists of a single message,
- * which is encrypted and compressed under the current (not the pending)
- * connection state. The message consists of a single byte of value 1.
- *
- * struct {
- * enum { change_cipher_spec(1), (255) } type;
- * } ChangeCipherSpec;
- *
- * @return the ChangeCipherSpec byte buffer.
- */
-tls.createChangeCipherSpec = function() {
- var rval = forge.util.createBuffer();
- rval.putByte(0x01);
- return rval;
-};
-
-/**
- * Creates a Finished message.
- *
- * struct {
- * opaque verify_data[12];
- * } Finished;
- *
- * verify_data
- * PRF(master_secret, finished_label, MD5(handshake_messages) +
- * SHA-1(handshake_messages)) [0..11];
- *
- * finished_label
- * For Finished messages sent by the client, the string "client
- * finished". For Finished messages sent by the server, the
- * string "server finished".
- *
- * handshake_messages
- * All of the data from all handshake messages up to but not
- * including this message. This is only data visible at the
- * handshake layer and does not include record layer headers.
- * This is the concatenation of all the Handshake structures as
- * defined in 7.4 exchanged thus far.
- *
- * @param c the connection.
- *
- * @return the Finished byte buffer.
- */
-tls.createFinished = function(c) {
- // generate verify_data
- var b = forge.util.createBuffer();
- b.putBuffer(c.session.md5.digest());
- b.putBuffer(c.session.sha1.digest());
-
- // TODO: determine prf function and verify length for TLS 1.2
- var client = (c.entity === tls.ConnectionEnd.client);
- var sp = c.session.sp;
- var vdl = 12;
- var prf = prf_TLS1;
- var label = client ? 'client finished' : 'server finished';
- b = prf(sp.master_secret, label, b.getBytes(), vdl);
-
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(tls.HandshakeType.finished);
- rval.putInt24(b.length());
- rval.putBuffer(b);
- return rval;
-};
-
-/**
- * Creates a HeartbeatMessage (See RFC 6520).
- *
- * struct {
- * HeartbeatMessageType type;
- * uint16 payload_length;
- * opaque payload[HeartbeatMessage.payload_length];
- * opaque padding[padding_length];
- * } HeartbeatMessage;
- *
- * The total length of a HeartbeatMessage MUST NOT exceed 2^14 or
- * max_fragment_length when negotiated as defined in [RFC6066].
- *
- * type: The message type, either heartbeat_request or heartbeat_response.
- *
- * payload_length: The length of the payload.
- *
- * payload: The payload consists of arbitrary content.
- *
- * padding: The padding is random content that MUST be ignored by the
- * receiver. The length of a HeartbeatMessage is TLSPlaintext.length
- * for TLS and DTLSPlaintext.length for DTLS. Furthermore, the
- * length of the type field is 1 byte, and the length of the
- * payload_length is 2. Therefore, the padding_length is
- * TLSPlaintext.length - payload_length - 3 for TLS and
- * DTLSPlaintext.length - payload_length - 3 for DTLS. The
- * padding_length MUST be at least 16.
- *
- * The sender of a HeartbeatMessage MUST use a random padding of at
- * least 16 bytes. The padding of a received HeartbeatMessage message
- * MUST be ignored.
- *
- * If the payload_length of a received HeartbeatMessage is too large,
- * the received HeartbeatMessage MUST be discarded silently.
- *
- * @param c the connection.
- * @param type the tls.HeartbeatMessageType.
- * @param payload the heartbeat data to send as the payload.
- * @param [payloadLength] the payload length to use, defaults to the
- * actual payload length.
- *
- * @return the HeartbeatRequest byte buffer.
- */
-tls.createHeartbeat = function(type, payload, payloadLength) {
- if(typeof payloadLength === 'undefined') {
- payloadLength = payload.length;
- }
- // build record fragment
- var rval = forge.util.createBuffer();
- rval.putByte(type); // heartbeat message type
- rval.putInt16(payloadLength); // payload length
- rval.putBytes(payload); // payload
- // padding
- var plaintextLength = rval.length();
- var paddingLength = Math.max(16, plaintextLength - payloadLength - 3);
- rval.putBytes(forge.random.getBytes(paddingLength));
- return rval;
-};
-
-/**
- * Fragments, compresses, encrypts, and queues a record for delivery.
- *
- * @param c the connection.
- * @param record the record to queue.
- */
-tls.queue = function(c, record) {
- // error during record creation
- if(!record) {
- return;
- }
-
- // if the record is a handshake record, update handshake hashes
- if(record.type === tls.ContentType.handshake) {
- var bytes = record.fragment.bytes();
- c.session.md5.update(bytes);
- c.session.sha1.update(bytes);
- bytes = null;
- }
-
- // handle record fragmentation
- var records;
- if(record.fragment.length() <= tls.MaxFragment) {
- records = [record];
- } else {
- // fragment data as long as it is too long
- records = [];
- var data = record.fragment.bytes();
- while(data.length > tls.MaxFragment) {
- records.push(tls.createRecord(c, {
- type: record.type,
- data: forge.util.createBuffer(data.slice(0, tls.MaxFragment))
- }));
- data = data.slice(tls.MaxFragment);
- }
- // add last record
- if(data.length > 0) {
- records.push(tls.createRecord(c, {
- type: record.type,
- data: forge.util.createBuffer(data)
- }));
- }
- }
-
- // compress and encrypt all fragmented records
- for(var i = 0; i < records.length && !c.fail; ++i) {
- // update the record using current write state
- var rec = records[i];
- var s = c.state.current.write;
- if(s.update(c, rec)) {
- // store record
- c.records.push(rec);
- }
- }
-};
-
-/**
- * Flushes all queued records to the output buffer and calls the
- * tlsDataReady() handler on the given connection.
- *
- * @param c the connection.
- *
- * @return true on success, false on failure.
- */
-tls.flush = function(c) {
- for(var i = 0; i < c.records.length; ++i) {
- var record = c.records[i];
-
- // add record header and fragment
- c.tlsData.putByte(record.type);
- c.tlsData.putByte(record.version.major);
- c.tlsData.putByte(record.version.minor);
- c.tlsData.putInt16(record.fragment.length());
- c.tlsData.putBuffer(c.records[i].fragment);
- }
- c.records = [];
- return c.tlsDataReady(c);
-};
-
-/**
- * Maps a pki.certificateError to a tls.Alert.Description.
- *
- * @param error the error to map.
- *
- * @return the alert description.
- */
-var _certErrorToAlertDesc = function(error) {
- switch(error) {
- case true:
- return true;
- case forge.pki.certificateError.bad_certificate:
- return tls.Alert.Description.bad_certificate;
- case forge.pki.certificateError.unsupported_certificate:
- return tls.Alert.Description.unsupported_certificate;
- case forge.pki.certificateError.certificate_revoked:
- return tls.Alert.Description.certificate_revoked;
- case forge.pki.certificateError.certificate_expired:
- return tls.Alert.Description.certificate_expired;
- case forge.pki.certificateError.certificate_unknown:
- return tls.Alert.Description.certificate_unknown;
- case forge.pki.certificateError.unknown_ca:
- return tls.Alert.Description.unknown_ca;
- default:
- return tls.Alert.Description.bad_certificate;
- }
-};
-
-/**
- * Maps a tls.Alert.Description to a pki.certificateError.
- *
- * @param desc the alert description.
- *
- * @return the certificate error.
- */
-var _alertDescToCertError = function(desc) {
- switch(desc) {
- case true:
- return true;
- case tls.Alert.Description.bad_certificate:
- return forge.pki.certificateError.bad_certificate;
- case tls.Alert.Description.unsupported_certificate:
- return forge.pki.certificateError.unsupported_certificate;
- case tls.Alert.Description.certificate_revoked:
- return forge.pki.certificateError.certificate_revoked;
- case tls.Alert.Description.certificate_expired:
- return forge.pki.certificateError.certificate_expired;
- case tls.Alert.Description.certificate_unknown:
- return forge.pki.certificateError.certificate_unknown;
- case tls.Alert.Description.unknown_ca:
- return forge.pki.certificateError.unknown_ca;
- default:
- return forge.pki.certificateError.bad_certificate;
- }
-};
-
-/**
- * Verifies a certificate chain against the given connection's
- * Certificate Authority store.
- *
- * @param c the TLS connection.
- * @param chain the certificate chain to verify, with the root or highest
- * authority at the end.
- *
- * @return true if successful, false if not.
- */
-tls.verifyCertificateChain = function(c, chain) {
- try {
- // verify chain
- forge.pki.verifyCertificateChain(c.caStore, chain,
- function verify(vfd, depth, chain) {
- // convert pki.certificateError to tls alert description
- var desc = _certErrorToAlertDesc(vfd);
-
- // call application callback
- var ret = c.verify(c, vfd, depth, chain);
- if(ret !== true) {
- if(typeof ret === 'object' && !forge.util.isArray(ret)) {
- // throw custom error
- var error = new Error('The application rejected the certificate.');
- error.send = true;
- error.alert = {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.bad_certificate
- };
- if(ret.message) {
- error.message = ret.message;
- }
- if(ret.alert) {
- error.alert.description = ret.alert;
- }
- throw error;
- }
-
- // convert tls alert description to pki.certificateError
- if(ret !== vfd) {
- ret = _alertDescToCertError(ret);
- }
- }
-
- return ret;
- });
- } catch(ex) {
- // build tls error if not already customized
- var err = ex;
- if(typeof err !== 'object' || forge.util.isArray(err)) {
- err = {
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: _certErrorToAlertDesc(ex)
- }
- };
- }
- if(!('send' in err)) {
- err.send = true;
- }
- if(!('alert' in err)) {
- err.alert = {
- level: tls.Alert.Level.fatal,
- description: _certErrorToAlertDesc(err.error)
- };
- }
-
- // send error
- c.error(c, err);
- }
-
- return !c.fail;
-};
-
-/**
- * Creates a new TLS session cache.
- *
- * @param cache optional map of session ID to cached session.
- * @param capacity the maximum size for the cache (default: 100).
- *
- * @return the new TLS session cache.
- */
-tls.createSessionCache = function(cache, capacity) {
- var rval = null;
-
- // assume input is already a session cache object
- if(cache && cache.getSession && cache.setSession && cache.order) {
- rval = cache;
- } else {
- // create cache
- rval = {};
- rval.cache = cache || {};
- rval.capacity = Math.max(capacity || 100, 1);
- rval.order = [];
-
- // store order for sessions, delete session overflow
- for(var key in cache) {
- if(rval.order.length <= capacity) {
- rval.order.push(key);
- } else {
- delete cache[key];
- }
- }
-
- // get a session from a session ID (or get any session)
- rval.getSession = function(sessionId) {
- var session = null;
- var key = null;
-
- // if session ID provided, use it
- if(sessionId) {
- key = forge.util.bytesToHex(sessionId);
- } else if(rval.order.length > 0) {
- // get first session from cache
- key = rval.order[0];
- }
-
- if(key !== null && key in rval.cache) {
- // get cached session and remove from cache
- session = rval.cache[key];
- delete rval.cache[key];
- for(var i in rval.order) {
- if(rval.order[i] === key) {
- rval.order.splice(i, 1);
- break;
- }
- }
- }
-
- return session;
- };
-
- // set a session in the cache
- rval.setSession = function(sessionId, session) {
- // remove session from cache if at capacity
- if(rval.order.length === rval.capacity) {
- var key = rval.order.shift();
- delete rval.cache[key];
- }
- // add session to cache
- var key = forge.util.bytesToHex(sessionId);
- rval.order.push(key);
- rval.cache[key] = session;
- };
- }
-
- return rval;
-};
-
-/**
- * Creates a new TLS connection.
- *
- * See public createConnection() docs for more details.
- *
- * @param options the options for this connection.
- *
- * @return the new TLS connection.
- */
-tls.createConnection = function(options) {
- var caStore = null;
- if(options.caStore) {
- // if CA store is an array, convert it to a CA store object
- if(forge.util.isArray(options.caStore)) {
- caStore = forge.pki.createCaStore(options.caStore);
- } else {
- caStore = options.caStore;
- }
- } else {
- // create empty CA store
- caStore = forge.pki.createCaStore();
- }
-
- // setup default cipher suites
- var cipherSuites = options.cipherSuites || null;
- if(cipherSuites === null) {
- cipherSuites = [];
- for(var key in tls.CipherSuites) {
- cipherSuites.push(tls.CipherSuites[key]);
- }
- }
-
- // set default entity
- var entity = (options.server || false) ?
- tls.ConnectionEnd.server : tls.ConnectionEnd.client;
-
- // create session cache if requested
- var sessionCache = options.sessionCache ?
- tls.createSessionCache(options.sessionCache) : null;
-
- // create TLS connection
- var c = {
- version: {major: tls.Version.major, minor: tls.Version.minor},
- entity: entity,
- sessionId: options.sessionId,
- caStore: caStore,
- sessionCache: sessionCache,
- cipherSuites: cipherSuites,
- connected: options.connected,
- virtualHost: options.virtualHost || null,
- verifyClient: options.verifyClient || false,
- verify: options.verify || function(cn, vfd, dpth, cts) {return vfd;},
- getCertificate: options.getCertificate || null,
- getPrivateKey: options.getPrivateKey || null,
- getSignature: options.getSignature || null,
- input: forge.util.createBuffer(),
- tlsData: forge.util.createBuffer(),
- data: forge.util.createBuffer(),
- tlsDataReady: options.tlsDataReady,
- dataReady: options.dataReady,
- heartbeatReceived: options.heartbeatReceived,
- closed: options.closed,
- error: function(c, ex) {
- // set origin if not set
- ex.origin = ex.origin ||
- ((c.entity === tls.ConnectionEnd.client) ? 'client' : 'server');
-
- // send TLS alert
- if(ex.send) {
- tls.queue(c, tls.createAlert(c, ex.alert));
- tls.flush(c);
- }
-
- // error is fatal by default
- var fatal = (ex.fatal !== false);
- if(fatal) {
- // set fail flag
- c.fail = true;
- }
-
- // call error handler first
- options.error(c, ex);
-
- if(fatal) {
- // fatal error, close connection, do not clear fail
- c.close(false);
- }
- },
- deflate: options.deflate || null,
- inflate: options.inflate || null
- };
-
- /**
- * Resets a closed TLS connection for reuse. Called in c.close().
- *
- * @param clearFail true to clear the fail flag (default: true).
- */
- c.reset = function(clearFail) {
- c.version = {major: tls.Version.major, minor: tls.Version.minor};
- c.record = null;
- c.session = null;
- c.peerCertificate = null;
- c.state = {
- pending: null,
- current: null
- };
- c.expect = (c.entity === tls.ConnectionEnd.client) ? SHE : CHE;
- c.fragmented = null;
- c.records = [];
- c.open = false;
- c.handshakes = 0;
- c.handshaking = false;
- c.isConnected = false;
- c.fail = !(clearFail || typeof(clearFail) === 'undefined');
- c.input.clear();
- c.tlsData.clear();
- c.data.clear();
- c.state.current = tls.createConnectionState(c);
- };
-
- // do initial reset of connection
- c.reset();
-
- /**
- * Updates the current TLS engine state based on the given record.
- *
- * @param c the TLS connection.
- * @param record the TLS record to act on.
- */
- var _update = function(c, record) {
- // get record handler (align type in table by subtracting lowest)
- var aligned = record.type - tls.ContentType.change_cipher_spec;
- var handlers = ctTable[c.entity][c.expect];
- if(aligned in handlers) {
- handlers[aligned](c, record);
- } else {
- // unexpected record
- tls.handleUnexpected(c, record);
- }
- };
-
- /**
- * Reads the record header and initializes the next record on the given
- * connection.
- *
- * @param c the TLS connection with the next record.
- *
- * @return 0 if the input data could be processed, otherwise the
- * number of bytes required for data to be processed.
- */
- var _readRecordHeader = function(c) {
- var rval = 0;
-
- // get input buffer and its length
- var b = c.input;
- var len = b.length();
-
- // need at least 5 bytes to initialize a record
- if(len < 5) {
- rval = 5 - len;
- } else {
- // enough bytes for header
- // initialize record
- c.record = {
- type: b.getByte(),
- version: {
- major: b.getByte(),
- minor: b.getByte()
- },
- length: b.getInt16(),
- fragment: forge.util.createBuffer(),
- ready: false
- };
-
- // check record version
- var compatibleVersion = (c.record.version.major === c.version.major);
- if(compatibleVersion && c.session && c.session.version) {
- // session version already set, require same minor version
- compatibleVersion = (c.record.version.minor === c.version.minor);
- }
- if(!compatibleVersion) {
- c.error(c, {
- message: 'Incompatible TLS version.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description: tls.Alert.Description.protocol_version
- }
- });
- }
- }
-
- return rval;
- };
-
- /**
- * Reads the next record's contents and appends its message to any
- * previously fragmented message.
- *
- * @param c the TLS connection with the next record.
- *
- * @return 0 if the input data could be processed, otherwise the
- * number of bytes required for data to be processed.
- */
- var _readRecord = function(c) {
- var rval = 0;
-
- // ensure there is enough input data to get the entire record
- var b = c.input;
- var len = b.length();
- if(len < c.record.length) {
- // not enough data yet, return how much is required
- rval = c.record.length - len;
- } else {
- // there is enough data to parse the pending record
- // fill record fragment and compact input buffer
- c.record.fragment.putBytes(b.getBytes(c.record.length));
- b.compact();
-
- // update record using current read state
- var s = c.state.current.read;
- if(s.update(c, c.record)) {
- // see if there is a previously fragmented message that the
- // new record's message fragment should be appended to
- if(c.fragmented !== null) {
- // if the record type matches a previously fragmented
- // record, append the record fragment to it
- if(c.fragmented.type === c.record.type) {
- // concatenate record fragments
- c.fragmented.fragment.putBuffer(c.record.fragment);
- c.record = c.fragmented;
- } else {
- // error, invalid fragmented record
- c.error(c, {
- message: 'Invalid fragmented record.',
- send: true,
- alert: {
- level: tls.Alert.Level.fatal,
- description:
- tls.Alert.Description.unexpected_message
- }
- });
- }
- }
-
- // record is now ready
- c.record.ready = true;
- }
- }
-
- return rval;
- };
-
- /**
- * Performs a handshake using the TLS Handshake Protocol, as a client.
- *
- * This method should only be called if the connection is in client mode.
- *
- * @param sessionId the session ID to use, null to start a new one.
- */
- c.handshake = function(sessionId) {
- // error to call this in non-client mode
- if(c.entity !== tls.ConnectionEnd.client) {
- // not fatal error
- c.error(c, {
- message: 'Cannot initiate handshake as a server.',
- fatal: false
- });
- } else if(c.handshaking) {
- // handshake is already in progress, fail but not fatal error
- c.error(c, {
- message: 'Handshake already in progress.',
- fatal: false
- });
- } else {
- // clear fail flag on reuse
- if(c.fail && !c.open && c.handshakes === 0) {
- c.fail = false;
- }
-
- // now handshaking
- c.handshaking = true;
-
- // default to blank (new session)
- sessionId = sessionId || '';
-
- // if a session ID was specified, try to find it in the cache
- var session = null;
- if(sessionId.length > 0) {
- if(c.sessionCache) {
- session = c.sessionCache.getSession(sessionId);
- }
-
- // matching session not found in cache, clear session ID
- if(session === null) {
- sessionId = '';
- }
- }
-
- // no session given, grab a session from the cache, if available
- if(sessionId.length === 0 && c.sessionCache) {
- session = c.sessionCache.getSession();
- if(session !== null) {
- sessionId = session.id;
- }
- }
-
- // set up session
- c.session = {
- id: sessionId,
- version: null,
- cipherSuite: null,
- compressionMethod: null,
- serverCertificate: null,
- certificateRequest: null,
- clientCertificate: null,
- sp: {},
- md5: forge.md.md5.create(),
- sha1: forge.md.sha1.create()
- };
-
- // use existing session information
- if(session) {
- // only update version on connection, session version not yet set
- c.version = session.version;
- c.session.sp = session.sp;
- }
-
- // generate new client random
- c.session.sp.client_random = tls.createRandom().getBytes();
-
- // connection now open
- c.open = true;
-
- // send hello
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.handshake,
- data: tls.createClientHello(c)
- }));
- tls.flush(c);
- }
- };
-
- /**
- * Called when TLS protocol data has been received from somewhere and should
- * be processed by the TLS engine.
- *
- * @param data the TLS protocol data, as a string, to process.
- *
- * @return 0 if the data could be processed, otherwise the number of bytes
- * required for data to be processed.
- */
- c.process = function(data) {
- var rval = 0;
-
- // buffer input data
- if(data) {
- c.input.putBytes(data);
- }
-
- // process next record if no failure, process will be called after
- // each record is handled (since handling can be asynchronous)
- if(!c.fail) {
- // reset record if ready and now empty
- if(c.record !== null &&
- c.record.ready && c.record.fragment.isEmpty()) {
- c.record = null;
- }
-
- // if there is no pending record, try to read record header
- if(c.record === null) {
- rval = _readRecordHeader(c);
- }
-
- // read the next record (if record not yet ready)
- if(!c.fail && c.record !== null && !c.record.ready) {
- rval = _readRecord(c);
- }
-
- // record ready to be handled, update engine state
- if(!c.fail && c.record !== null && c.record.ready) {
- _update(c, c.record);
- }
- }
-
- return rval;
- };
-
- /**
- * Requests that application data be packaged into a TLS record. The
- * tlsDataReady handler will be called when the TLS record(s) have been
- * prepared.
- *
- * @param data the application data, as a raw 'binary' encoded string, to
- * be sent; to send utf-16/utf-8 string data, use the return value
- * of util.encodeUtf8(str).
- *
- * @return true on success, false on failure.
- */
- c.prepare = function(data) {
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.application_data,
- data: forge.util.createBuffer(data)
- }));
- return tls.flush(c);
- };
-
- /**
- * Requests that a heartbeat request be packaged into a TLS record for
- * transmission. The tlsDataReady handler will be called when TLS record(s)
- * have been prepared.
- *
- * When a heartbeat response has been received, the heartbeatReceived
- * handler will be called with the matching payload. This handler can
- * be used to clear a retransmission timer, etc.
- *
- * @param payload the heartbeat data to send as the payload in the message.
- * @param [payloadLength] the payload length to use, defaults to the
- * actual payload length.
- *
- * @return true on success, false on failure.
- */
- c.prepareHeartbeatRequest = function(payload, payloadLength) {
- if(payload instanceof forge.util.ByteBuffer) {
- payload = payload.bytes();
- }
- if(typeof payloadLength === 'undefined') {
- payloadLength = payload.length;
- }
- c.expectedHeartbeatPayload = payload;
- tls.queue(c, tls.createRecord(c, {
- type: tls.ContentType.heartbeat,
- data: tls.createHeartbeat(
- tls.HeartbeatMessageType.heartbeat_request, payload, payloadLength)
- }));
- return tls.flush(c);
- };
-
- /**
- * Closes the connection (sends a close_notify alert).
- *
- * @param clearFail true to clear the fail flag (default: true).
- */
- c.close = function(clearFail) {
- // save session if connection didn't fail
- if(!c.fail && c.sessionCache && c.session) {
- // only need to preserve session ID, version, and security params
- var session = {
- id: c.session.id,
- version: c.session.version,
- sp: c.session.sp
- };
- session.sp.keys = null;
- c.sessionCache.setSession(session.id, session);
- }
-
- if(c.open) {
- // connection no longer open, clear input
- c.open = false;
- c.input.clear();
-
- // if connected or handshaking, send an alert
- if(c.isConnected || c.handshaking) {
- c.isConnected = c.handshaking = false;
-
- // send close_notify alert
- tls.queue(c, tls.createAlert(c, {
- level: tls.Alert.Level.warning,
- description: tls.Alert.Description.close_notify
- }));
- tls.flush(c);
- }
-
- // call handler
- c.closed(c);
- }
-
- // reset TLS connection, do not clear fail flag
- c.reset(clearFail);
- };
-
- return c;
-};
-
-/* TLS API */
-forge.tls = forge.tls || {};
-
-// expose non-functions
-for(var key in tls) {
- if(typeof tls[key] !== 'function') {
- forge.tls[key] = tls[key];
- }
-}
-
-// expose prf_tls1 for testing
-forge.tls.prf_tls1 = prf_TLS1;
-
-// expose sha1 hmac method
-forge.tls.hmac_sha1 = hmac_sha1;
-
-// expose session cache creation
-forge.tls.createSessionCache = tls.createSessionCache;
-
-/**
- * Creates a new TLS connection. This does not make any assumptions about the
- * transport layer that TLS is working on top of, ie: it does not assume there
- * is a TCP/IP connection or establish one. A TLS connection is totally
- * abstracted away from the layer is runs on top of, it merely establishes a
- * secure channel between a client" and a "server".
- *
- * A TLS connection contains 4 connection states: pending read and write, and
- * current read and write.
- *
- * At initialization, the current read and write states will be null. Only once
- * the security parameters have been set and the keys have been generated can
- * the pending states be converted into current states. Current states will be
- * updated for each record processed.
- *
- * A custom certificate verify callback may be provided to check information
- * like the common name on the server's certificate. It will be called for
- * every certificate in the chain. It has the following signature:
- *
- * variable func(c, certs, index, preVerify)
- * Where:
- * c The TLS connection
- * verified Set to true if certificate was verified, otherwise the alert
- * tls.Alert.Description for why the certificate failed.
- * depth The current index in the chain, where 0 is the server's cert.
- * certs The certificate chain, *NOTE* if the server was anonymous then
- * the chain will be empty.
- *
- * The function returns true on success and on failure either the appropriate
- * tls.Alert.Description or an object with 'alert' set to the appropriate
- * tls.Alert.Description and 'message' set to a custom error message. If true
- * is not returned then the connection will abort using, in order of
- * availability, first the returned alert description, second the preVerify
- * alert description, and lastly the default 'bad_certificate'.
- *
- * There are three callbacks that can be used to make use of client-side
- * certificates where each takes the TLS connection as the first parameter:
- *
- * getCertificate(conn, hint)
- * The second parameter is a hint as to which certificate should be
- * returned. If the connection entity is a client, then the hint will be
- * the CertificateRequest message from the server that is part of the
- * TLS protocol. If the connection entity is a server, then it will be
- * the servername list provided via an SNI extension the ClientHello, if
- * one was provided (empty array if not). The hint can be examined to
- * determine which certificate to use (advanced). Most implementations
- * will just return a certificate. The return value must be a
- * PEM-formatted certificate or an array of PEM-formatted certificates
- * that constitute a certificate chain, with the first in the array/chain
- * being the client's certificate.
- * getPrivateKey(conn, certificate)
- * The second parameter is an forge.pki X.509 certificate object that
- * is associated with the requested private key. The return value must
- * be a PEM-formatted private key.
- * getSignature(conn, bytes, callback)
- * This callback can be used instead of getPrivateKey if the private key
- * is not directly accessible in javascript or should not be. For
- * instance, a secure external web service could provide the signature
- * in exchange for appropriate credentials. The second parameter is a
- * string of bytes to be signed that are part of the TLS protocol. These
- * bytes are used to verify that the private key for the previously
- * provided client-side certificate is accessible to the client. The
- * callback is a function that takes 2 parameters, the TLS connection
- * and the RSA encrypted (signed) bytes as a string. This callback must
- * be called once the signature is ready.
- *
- * @param options the options for this connection:
- * server: true if the connection is server-side, false for client.
- * sessionId: a session ID to reuse, null for a new connection.
- * caStore: an array of certificates to trust.
- * sessionCache: a session cache to use.
- * cipherSuites: an optional array of cipher suites to use,
- * see tls.CipherSuites.
- * connected: function(conn) called when the first handshake completes.
- * virtualHost: the virtual server name to use in a TLS SNI extension.
- * verifyClient: true to require a client certificate in server mode,
- * 'optional' to request one, false not to (default: false).
- * verify: a handler used to custom verify certificates in the chain.
- * getCertificate: an optional callback used to get a certificate or
- * a chain of certificates (as an array).
- * getPrivateKey: an optional callback used to get a private key.
- * getSignature: an optional callback used to get a signature.
- * tlsDataReady: function(conn) called when TLS protocol data has been
- * prepared and is ready to be used (typically sent over a socket
- * connection to its destination), read from conn.tlsData buffer.
- * dataReady: function(conn) called when application data has
- * been parsed from a TLS record and should be consumed by the
- * application, read from conn.data buffer.
- * closed: function(conn) called when the connection has been closed.
- * error: function(conn, error) called when there was an error.
- * deflate: function(inBytes) if provided, will deflate TLS records using
- * the deflate algorithm if the server supports it.
- * inflate: function(inBytes) if provided, will inflate TLS records using
- * the deflate algorithm if the server supports it.
- *
- * @return the new TLS connection.
- */
-forge.tls.createConnection = tls.createConnection;
-
-} // end module implementation
-
-/* ########## Begin module wrapper ########## */
-var name = 'tls';
-if(typeof define !== 'function') {
- // NodeJS -> AMD
- if(typeof module === 'object' && module.exports) {
- var nodeJS = true;
- define = function(ids, factory) {
- factory(require, module);
- };
- } else {
- // <script>
- if(typeof forge === 'undefined') {
- forge = {};
- }
- return initModule(forge);
- }
-}
-// AMD
-var deps;
-var defineFunc = function(require, module) {
- module.exports = function(forge) {
- var mods = deps.map(function(dep) {
- return require(dep);
- }).concat(initModule);
- // handle circular dependencies
- forge = forge || {};
- forge.defined = forge.defined || {};
- if(forge.defined[name]) {
- return forge[name];
- }
- forge.defined[name] = true;
- for(var i = 0; i < mods.length; ++i) {
- mods[i](forge);
- }
- return forge[name];
- };
-};
-var tmpDefine = define;
-define = function(ids, factory) {
- deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
- if(nodeJS) {
- delete define;
- return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
- }
- define = tmpDefine;
- return define.apply(null, Array.prototype.slice.call(arguments, 0));
-};
-define([
- 'require',
- 'module',
- './asn1',
- './hmac',
- './md',
- './pem',
- './pki',
- './random',
- './util'], function() {
- defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
-});
-})();