summaryrefslogtreecommitdiff
path: root/alarm/node_modules/node-forge/js/rsa.js
diff options
context:
space:
mode:
Diffstat (limited to 'alarm/node_modules/node-forge/js/rsa.js')
-rw-r--r--alarm/node_modules/node-forge/js/rsa.js1712
1 files changed, 0 insertions, 1712 deletions
diff --git a/alarm/node_modules/node-forge/js/rsa.js b/alarm/node_modules/node-forge/js/rsa.js
deleted file mode 100644
index 90f8c0a..0000000
--- a/alarm/node_modules/node-forge/js/rsa.js
+++ /dev/null
@@ -1,1712 +0,0 @@
-/**
- * Javascript implementation of basic RSA algorithms.
- *
- * @author Dave Longley
- *
- * Copyright (c) 2010-2014 Digital Bazaar, Inc.
- *
- * The only algorithm currently supported for PKI is RSA.
- *
- * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo
- * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier
- * and a subjectPublicKey of type bit string.
- *
- * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters
- * for the algorithm, if any. In the case of RSA, there aren't any.
- *
- * SubjectPublicKeyInfo ::= SEQUENCE {
- * algorithm AlgorithmIdentifier,
- * subjectPublicKey BIT STRING
- * }
- *
- * AlgorithmIdentifer ::= SEQUENCE {
- * algorithm OBJECT IDENTIFIER,
- * parameters ANY DEFINED BY algorithm OPTIONAL
- * }
- *
- * For an RSA public key, the subjectPublicKey is:
- *
- * RSAPublicKey ::= SEQUENCE {
- * modulus INTEGER, -- n
- * publicExponent INTEGER -- e
- * }
- *
- * PrivateKeyInfo ::= SEQUENCE {
- * version Version,
- * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
- * privateKey PrivateKey,
- * attributes [0] IMPLICIT Attributes OPTIONAL
- * }
- *
- * Version ::= INTEGER
- * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
- * PrivateKey ::= OCTET STRING
- * Attributes ::= SET OF Attribute
- *
- * An RSA private key as the following structure:
- *
- * RSAPrivateKey ::= SEQUENCE {
- * version Version,
- * modulus INTEGER, -- n
- * publicExponent INTEGER, -- e
- * privateExponent INTEGER, -- d
- * prime1 INTEGER, -- p
- * prime2 INTEGER, -- q
- * exponent1 INTEGER, -- d mod (p-1)
- * exponent2 INTEGER, -- d mod (q-1)
- * coefficient INTEGER -- (inverse of q) mod p
- * }
- *
- * Version ::= INTEGER
- *
- * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1
- */
-(function() {
-function initModule(forge) {
-/* ########## Begin module implementation ########## */
-
-if(typeof BigInteger === 'undefined') {
- var BigInteger = forge.jsbn.BigInteger;
-}
-
-// shortcut for asn.1 API
-var asn1 = forge.asn1;
-
-/*
- * RSA encryption and decryption, see RFC 2313.
- */
-forge.pki = forge.pki || {};
-forge.pki.rsa = forge.rsa = forge.rsa || {};
-var pki = forge.pki;
-
-// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
-var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
-
-// validator for a PrivateKeyInfo structure
-var privateKeyValidator = {
- // PrivateKeyInfo
- name: 'PrivateKeyInfo',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- value: [{
- // Version (INTEGER)
- name: 'PrivateKeyInfo.version',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyVersion'
- }, {
- // privateKeyAlgorithm
- name: 'PrivateKeyInfo.privateKeyAlgorithm',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- value: [{
- name: 'AlgorithmIdentifier.algorithm',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.OID,
- constructed: false,
- capture: 'privateKeyOid'
- }]
- }, {
- // PrivateKey
- name: 'PrivateKeyInfo',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.OCTETSTRING,
- constructed: false,
- capture: 'privateKey'
- }]
-};
-
-// validator for an RSA private key
-var rsaPrivateKeyValidator = {
- // RSAPrivateKey
- name: 'RSAPrivateKey',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- value: [{
- // Version (INTEGER)
- name: 'RSAPrivateKey.version',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyVersion'
- }, {
- // modulus (n)
- name: 'RSAPrivateKey.modulus',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyModulus'
- }, {
- // publicExponent (e)
- name: 'RSAPrivateKey.publicExponent',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyPublicExponent'
- }, {
- // privateExponent (d)
- name: 'RSAPrivateKey.privateExponent',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyPrivateExponent'
- }, {
- // prime1 (p)
- name: 'RSAPrivateKey.prime1',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyPrime1'
- }, {
- // prime2 (q)
- name: 'RSAPrivateKey.prime2',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyPrime2'
- }, {
- // exponent1 (d mod (p-1))
- name: 'RSAPrivateKey.exponent1',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyExponent1'
- }, {
- // exponent2 (d mod (q-1))
- name: 'RSAPrivateKey.exponent2',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyExponent2'
- }, {
- // coefficient ((inverse of q) mod p)
- name: 'RSAPrivateKey.coefficient',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'privateKeyCoefficient'
- }]
-};
-
-// validator for an RSA public key
-var rsaPublicKeyValidator = {
- // RSAPublicKey
- name: 'RSAPublicKey',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- value: [{
- // modulus (n)
- name: 'RSAPublicKey.modulus',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'publicKeyModulus'
- }, {
- // publicExponent (e)
- name: 'RSAPublicKey.exponent',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.INTEGER,
- constructed: false,
- capture: 'publicKeyExponent'
- }]
-};
-
-// validator for an SubjectPublicKeyInfo structure
-// Note: Currently only works with an RSA public key
-var publicKeyValidator = forge.pki.rsa.publicKeyValidator = {
- name: 'SubjectPublicKeyInfo',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- captureAsn1: 'subjectPublicKeyInfo',
- value: [{
- name: 'SubjectPublicKeyInfo.AlgorithmIdentifier',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- value: [{
- name: 'AlgorithmIdentifier.algorithm',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.OID,
- constructed: false,
- capture: 'publicKeyOid'
- }]
- }, {
- // subjectPublicKey
- name: 'SubjectPublicKeyInfo.subjectPublicKey',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.BITSTRING,
- constructed: false,
- value: [{
- // RSAPublicKey
- name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey',
- tagClass: asn1.Class.UNIVERSAL,
- type: asn1.Type.SEQUENCE,
- constructed: true,
- optional: true,
- captureAsn1: 'rsaPublicKey'
- }]
- }]
-};
-
-/**
- * Wrap digest in DigestInfo object.
- *
- * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
- *
- * DigestInfo ::= SEQUENCE {
- * digestAlgorithm DigestAlgorithmIdentifier,
- * digest Digest
- * }
- *
- * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
- * Digest ::= OCTET STRING
- *
- * @param md the message digest object with the hash to sign.
- *
- * @return the encoded message (ready for RSA encrytion)
- */
-var emsaPkcs1v15encode = function(md) {
- // get the oid for the algorithm
- var oid;
- if(md.algorithm in pki.oids) {
- oid = pki.oids[md.algorithm];
- } else {
- var error = new Error('Unknown message digest algorithm.');
- error.algorithm = md.algorithm;
- throw error;
- }
- var oidBytes = asn1.oidToDer(oid).getBytes();
-
- // create the digest info
- var digestInfo = asn1.create(
- asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
- var digestAlgorithm = asn1.create(
- asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
- digestAlgorithm.value.push(asn1.create(
- asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
- digestAlgorithm.value.push(asn1.create(
- asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
- var digest = asn1.create(
- asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
- false, md.digest().getBytes());
- digestInfo.value.push(digestAlgorithm);
- digestInfo.value.push(digest);
-
- // encode digest info
- return asn1.toDer(digestInfo).getBytes();
-};
-
-/**
- * Performs x^c mod n (RSA encryption or decryption operation).
- *
- * @param x the number to raise and mod.
- * @param key the key to use.
- * @param pub true if the key is public, false if private.
- *
- * @return the result of x^c mod n.
- */
-var _modPow = function(x, key, pub) {
- if(pub) {
- return x.modPow(key.e, key.n);
- }
-
- if(!key.p || !key.q) {
- // allow calculation without CRT params (slow)
- return x.modPow(key.d, key.n);
- }
-
- // pre-compute dP, dQ, and qInv if necessary
- if(!key.dP) {
- key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
- }
- if(!key.dQ) {
- key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
- }
- if(!key.qInv) {
- key.qInv = key.q.modInverse(key.p);
- }
-
- /* Chinese remainder theorem (CRT) states:
-
- Suppose n1, n2, ..., nk are positive integers which are pairwise
- coprime (n1 and n2 have no common factors other than 1). For any
- integers x1, x2, ..., xk there exists an integer x solving the
- system of simultaneous congruences (where ~= means modularly
- congruent so a ~= b mod n means a mod n = b mod n):
-
- x ~= x1 mod n1
- x ~= x2 mod n2
- ...
- x ~= xk mod nk
-
- This system of congruences has a single simultaneous solution x
- between 0 and n - 1. Furthermore, each xk solution and x itself
- is congruent modulo the product n = n1*n2*...*nk.
- So x1 mod n = x2 mod n = xk mod n = x mod n.
-
- The single simultaneous solution x can be solved with the following
- equation:
-
- x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
-
- Where x is less than n, xi = x mod ni.
-
- For RSA we are only concerned with k = 2. The modulus n = pq, where
- p and q are coprime. The RSA decryption algorithm is:
-
- y = x^d mod n
-
- Given the above:
-
- x1 = x^d mod p
- r1 = n/p = q
- s1 = q^-1 mod p
- x2 = x^d mod q
- r2 = n/q = p
- s2 = p^-1 mod q
-
- So y = (x1r1s1 + x2r2s2) mod n
- = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
-
- According to Fermat's Little Theorem, if the modulus P is prime,
- for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
- Since A is not divisible by P it follows that if:
- N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
-
- A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
- to calculate). In order to calculate x^d mod p more quickly the
- exponent d mod (p - 1) is stored in the RSA private key (the same
- is done for x^d mod q). These values are referred to as dP and dQ
- respectively. Therefore we now have:
-
- y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
-
- Since we'll be reducing x^dP by modulo p (same for q) we can also
- reduce x by p (and q respectively) before hand. Therefore, let
-
- xp = ((x mod p)^dP mod p), and
- xq = ((x mod q)^dQ mod q), yielding:
-
- y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
-
- This can be further reduced to a simple algorithm that only
- requires 1 inverse (the q inverse is used) to be used and stored.
- The algorithm is called Garner's algorithm. If qInv is the
- inverse of q, we simply calculate:
-
- y = (qInv*(xp - xq) mod p) * q + xq
-
- However, there are two further complications. First, we need to
- ensure that xp > xq to prevent signed BigIntegers from being used
- so we add p until this is true (since we will be mod'ing with
- p anyway). Then, there is a known timing attack on algorithms
- using the CRT. To mitigate this risk, "cryptographic blinding"
- should be used. This requires simply generating a random number r between
- 0 and n-1 and its inverse and multiplying x by r^e before calculating y
- and then multiplying y by r^-1 afterwards.
- */
-
- // cryptographic blinding
- var r;
- do {
- r = new BigInteger(
- forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)),
- 16).mod(key.n);
- } while(r.equals(BigInteger.ZERO));
- x = x.multiply(r.modPow(key.e, key.n)).mod(key.n);
-
- // calculate xp and xq
- var xp = x.mod(key.p).modPow(key.dP, key.p);
- var xq = x.mod(key.q).modPow(key.dQ, key.q);
-
- // xp must be larger than xq to avoid signed bit usage
- while(xp.compareTo(xq) < 0) {
- xp = xp.add(key.p);
- }
-
- // do last step
- var y = xp.subtract(xq)
- .multiply(key.qInv).mod(key.p)
- .multiply(key.q).add(xq);
-
- // remove effect of random for cryptographic blinding
- y = y.multiply(r.modInverse(key.n)).mod(key.n);
-
- return y;
-};
-
-/**
- * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or
- * 'encrypt' on a public key object instead.
- *
- * Performs RSA encryption.
- *
- * The parameter bt controls whether to put padding bytes before the
- * message passed in. Set bt to either true or false to disable padding
- * completely (in order to handle e.g. EMSA-PSS encoding seperately before),
- * signaling whether the encryption operation is a public key operation
- * (i.e. encrypting data) or not, i.e. private key operation (data signing).
- *
- * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
- * (for signing) or 0x02 (for encryption). The key operation mode (private
- * or public) is derived from this flag in that case).
- *
- * @param m the message to encrypt as a byte string.
- * @param key the RSA key to use.
- * @param bt for PKCS#1 v1.5 padding, the block type to use
- * (0x01 for private key, 0x02 for public),
- * to disable padding: true = public key, false = private key.
- *
- * @return the encrypted bytes as a string.
- */
-pki.rsa.encrypt = function(m, key, bt) {
- var pub = bt;
- var eb;
-
- // get the length of the modulus in bytes
- var k = Math.ceil(key.n.bitLength() / 8);
-
- if(bt !== false && bt !== true) {
- // legacy, default to PKCS#1 v1.5 padding
- pub = (bt === 0x02);
- eb = _encodePkcs1_v1_5(m, key, bt);
- } else {
- eb = forge.util.createBuffer();
- eb.putBytes(m);
- }
-
- // load encryption block as big integer 'x'
- // FIXME: hex conversion inefficient, get BigInteger w/byte strings
- var x = new BigInteger(eb.toHex(), 16);
-
- // do RSA encryption
- var y = _modPow(x, key, pub);
-
- // convert y into the encrypted data byte string, if y is shorter in
- // bytes than k, then prepend zero bytes to fill up ed
- // FIXME: hex conversion inefficient, get BigInteger w/byte strings
- var yhex = y.toString(16);
- var ed = forge.util.createBuffer();
- var zeros = k - Math.ceil(yhex.length / 2);
- while(zeros > 0) {
- ed.putByte(0x00);
- --zeros;
- }
- ed.putBytes(forge.util.hexToBytes(yhex));
- return ed.getBytes();
-};
-
-/**
- * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or
- * 'verify' on a public key object instead.
- *
- * Performs RSA decryption.
- *
- * The parameter ml controls whether to apply PKCS#1 v1.5 padding
- * or not. Set ml = false to disable padding removal completely
- * (in order to handle e.g. EMSA-PSS later on) and simply pass back
- * the RSA encryption block.
- *
- * @param ed the encrypted data to decrypt in as a byte string.
- * @param key the RSA key to use.
- * @param pub true for a public key operation, false for private.
- * @param ml the message length, if known, false to disable padding.
- *
- * @return the decrypted message as a byte string.
- */
-pki.rsa.decrypt = function(ed, key, pub, ml) {
- // get the length of the modulus in bytes
- var k = Math.ceil(key.n.bitLength() / 8);
-
- // error if the length of the encrypted data ED is not k
- if(ed.length !== k) {
- var error = new Error('Encrypted message length is invalid.');
- error.length = ed.length;
- error.expected = k;
- throw error;
- }
-
- // convert encrypted data into a big integer
- // FIXME: hex conversion inefficient, get BigInteger w/byte strings
- var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
-
- // y must be less than the modulus or it wasn't the result of
- // a previous mod operation (encryption) using that modulus
- if(y.compareTo(key.n) >= 0) {
- throw new Error('Encrypted message is invalid.');
- }
-
- // do RSA decryption
- var x = _modPow(y, key, pub);
-
- // create the encryption block, if x is shorter in bytes than k, then
- // prepend zero bytes to fill up eb
- // FIXME: hex conversion inefficient, get BigInteger w/byte strings
- var xhex = x.toString(16);
- var eb = forge.util.createBuffer();
- var zeros = k - Math.ceil(xhex.length / 2);
- while(zeros > 0) {
- eb.putByte(0x00);
- --zeros;
- }
- eb.putBytes(forge.util.hexToBytes(xhex));
-
- if(ml !== false) {
- // legacy, default to PKCS#1 v1.5 padding
- return _decodePkcs1_v1_5(eb.getBytes(), key, pub);
- }
-
- // return message
- return eb.getBytes();
-};
-
-/**
- * Creates an RSA key-pair generation state object. It is used to allow
- * key-generation to be performed in steps. It also allows for a UI to
- * display progress updates.
- *
- * @param bits the size for the private key in bits, defaults to 2048.
- * @param e the public exponent to use, defaults to 65537 (0x10001).
- * @param [options] the options to use.
- * prng a custom crypto-secure pseudo-random number generator to use,
- * that must define "getBytesSync".
- * algorithm the algorithm to use (default: 'PRIMEINC').
- *
- * @return the state object to use to generate the key-pair.
- */
-pki.rsa.createKeyPairGenerationState = function(bits, e, options) {
- // TODO: migrate step-based prime generation code to forge.prime
-
- // set default bits
- if(typeof(bits) === 'string') {
- bits = parseInt(bits, 10);
- }
- bits = bits || 2048;
-
- // create prng with api that matches BigInteger secure random
- options = options || {};
- var prng = options.prng || forge.random;
- var rng = {
- // x is an array to fill with bytes
- nextBytes: function(x) {
- var b = prng.getBytesSync(x.length);
- for(var i = 0; i < x.length; ++i) {
- x[i] = b.charCodeAt(i);
- }
- }
- };
-
- var algorithm = options.algorithm || 'PRIMEINC';
-
- // create PRIMEINC algorithm state
- var rval;
- if(algorithm === 'PRIMEINC') {
- rval = {
- algorithm: algorithm,
- state: 0,
- bits: bits,
- rng: rng,
- eInt: e || 65537,
- e: new BigInteger(null),
- p: null,
- q: null,
- qBits: bits >> 1,
- pBits: bits - (bits >> 1),
- pqState: 0,
- num: null,
- keys: null
- };
- rval.e.fromInt(rval.eInt);
- } else {
- throw new Error('Invalid key generation algorithm: ' + algorithm);
- }
-
- return rval;
-};
-
-/**
- * Attempts to runs the key-generation algorithm for at most n seconds
- * (approximately) using the given state. When key-generation has completed,
- * the keys will be stored in state.keys.
- *
- * To use this function to update a UI while generating a key or to prevent
- * causing browser lockups/warnings, set "n" to a value other than 0. A
- * simple pattern for generating a key and showing a progress indicator is:
- *
- * var state = pki.rsa.createKeyPairGenerationState(2048);
- * var step = function() {
- * // step key-generation, run algorithm for 100 ms, repeat
- * if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
- * setTimeout(step, 1);
- * } else {
- * // key-generation complete
- * // TODO: turn off progress indicator here
- * // TODO: use the generated key-pair in "state.keys"
- * }
- * };
- * // TODO: turn on progress indicator here
- * setTimeout(step, 0);
- *
- * @param state the state to use.
- * @param n the maximum number of milliseconds to run the algorithm for, 0
- * to run the algorithm to completion.
- *
- * @return true if the key-generation completed, false if not.
- */
-pki.rsa.stepKeyPairGenerationState = function(state, n) {
- // set default algorithm if not set
- if(!('algorithm' in state)) {
- state.algorithm = 'PRIMEINC';
- }
-
- // TODO: migrate step-based prime generation code to forge.prime
- // TODO: abstract as PRIMEINC algorithm
-
- // do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
- // with some minor optimizations and designed to run in steps
-
- // local state vars
- var THIRTY = new BigInteger(null);
- THIRTY.fromInt(30);
- var deltaIdx = 0;
- var op_or = function(x,y) { return x|y; };
-
- // keep stepping until time limit is reached or done
- var t1 = +new Date();
- var t2;
- var total = 0;
- while(state.keys === null && (n <= 0 || total < n)) {
- // generate p or q
- if(state.state === 0) {
- /* Note: All primes are of the form:
-
- 30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
-
- When we generate a random number, we always align it at 30k + 1. Each
- time the number is determined not to be prime we add to get to the
- next 'i', eg: if the number was at 30k + 1 we add 6. */
- var bits = (state.p === null) ? state.pBits : state.qBits;
- var bits1 = bits - 1;
-
- // get a random number
- if(state.pqState === 0) {
- state.num = new BigInteger(bits, state.rng);
- // force MSB set
- if(!state.num.testBit(bits1)) {
- state.num.bitwiseTo(
- BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
- }
- // align number on 30k+1 boundary
- state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
- deltaIdx = 0;
-
- ++state.pqState;
- } else if(state.pqState === 1) {
- // try to make the number a prime
- if(state.num.bitLength() > bits) {
- // overflow, try again
- state.pqState = 0;
- // do primality test
- } else if(state.num.isProbablePrime(
- _getMillerRabinTests(state.num.bitLength()))) {
- ++state.pqState;
- } else {
- // get next potential prime
- state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
- }
- } else if(state.pqState === 2) {
- // ensure number is coprime with e
- state.pqState =
- (state.num.subtract(BigInteger.ONE).gcd(state.e)
- .compareTo(BigInteger.ONE) === 0) ? 3 : 0;
- } else if(state.pqState === 3) {
- // store p or q
- state.pqState = 0;
- if(state.p === null) {
- state.p = state.num;
- } else {
- state.q = state.num;
- }
-
- // advance state if both p and q are ready
- if(state.p !== null && state.q !== null) {
- ++state.state;
- }
- state.num = null;
- }
- } else if(state.state === 1) {
- // ensure p is larger than q (swap them if not)
- if(state.p.compareTo(state.q) < 0) {
- state.num = state.p;
- state.p = state.q;
- state.q = state.num;
- }
- ++state.state;
- } else if(state.state === 2) {
- // compute phi: (p - 1)(q - 1) (Euler's totient function)
- state.p1 = state.p.subtract(BigInteger.ONE);
- state.q1 = state.q.subtract(BigInteger.ONE);
- state.phi = state.p1.multiply(state.q1);
- ++state.state;
- } else if(state.state === 3) {
- // ensure e and phi are coprime
- if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
- // phi and e are coprime, advance
- ++state.state;
- } else {
- // phi and e aren't coprime, so generate a new p and q
- state.p = null;
- state.q = null;
- state.state = 0;
- }
- } else if(state.state === 4) {
- // create n, ensure n is has the right number of bits
- state.n = state.p.multiply(state.q);
-
- // ensure n is right number of bits
- if(state.n.bitLength() === state.bits) {
- // success, advance
- ++state.state;
- } else {
- // failed, get new q
- state.q = null;
- state.state = 0;
- }
- } else if(state.state === 5) {
- // set keys
- var d = state.e.modInverse(state.phi);
- state.keys = {
- privateKey: pki.rsa.setPrivateKey(
- state.n, state.e, d, state.p, state.q,
- d.mod(state.p1), d.mod(state.q1),
- state.q.modInverse(state.p)),
- publicKey: pki.rsa.setPublicKey(state.n, state.e)
- };
- }
-
- // update timing
- t2 = +new Date();
- total += t2 - t1;
- t1 = t2;
- }
-
- return state.keys !== null;
-};
-
-/**
- * Generates an RSA public-private key pair in a single call.
- *
- * To generate a key-pair in steps (to allow for progress updates and to
- * prevent blocking or warnings in slow browsers) then use the key-pair
- * generation state functions.
- *
- * To generate a key-pair asynchronously (either through web-workers, if
- * available, or by breaking up the work on the main thread), pass a
- * callback function.
- *
- * @param [bits] the size for the private key in bits, defaults to 2048.
- * @param [e] the public exponent to use, defaults to 65537.
- * @param [options] options for key-pair generation, if given then 'bits'
- * and 'e' must *not* be given:
- * bits the size for the private key in bits, (default: 2048).
- * e the public exponent to use, (default: 65537 (0x10001)).
- * workerScript the worker script URL.
- * workers the number of web workers (if supported) to use,
- * (default: 2).
- * workLoad the size of the work load, ie: number of possible prime
- * numbers for each web worker to check per work assignment,
- * (default: 100).
- * e the public exponent to use, defaults to 65537.
- * prng a custom crypto-secure pseudo-random number generator to use,
- * that must define "getBytesSync".
- * algorithm the algorithm to use (default: 'PRIMEINC').
- * @param [callback(err, keypair)] called once the operation completes.
- *
- * @return an object with privateKey and publicKey properties.
- */
-pki.rsa.generateKeyPair = function(bits, e, options, callback) {
- // (bits), (options), (callback)
- if(arguments.length === 1) {
- if(typeof bits === 'object') {
- options = bits;
- bits = undefined;
- } else if(typeof bits === 'function') {
- callback = bits;
- bits = undefined;
- }
- } else if(arguments.length === 2) {
- // (bits, e), (bits, options), (bits, callback), (options, callback)
- if(typeof bits === 'number') {
- if(typeof e === 'function') {
- callback = e;
- e = undefined;
- } else if(typeof e !== 'number') {
- options = e;
- e = undefined;
- }
- } else {
- options = bits;
- callback = e;
- bits = undefined;
- e = undefined;
- }
- } else if(arguments.length === 3) {
- // (bits, e, options), (bits, e, callback), (bits, options, callback)
- if(typeof e === 'number') {
- if(typeof options === 'function') {
- callback = options;
- options = undefined;
- }
- } else {
- callback = options;
- options = e;
- e = undefined;
- }
- }
- options = options || {};
- if(bits === undefined) {
- bits = options.bits || 2048;
- }
- if(e === undefined) {
- e = options.e || 0x10001;
- }
- var state = pki.rsa.createKeyPairGenerationState(bits, e, options);
- if(!callback) {
- pki.rsa.stepKeyPairGenerationState(state, 0);
- return state.keys;
- }
- _generateKeyPair(state, options, callback);
-};
-
-/**
- * Sets an RSA public key from BigIntegers modulus and exponent.
- *
- * @param n the modulus.
- * @param e the exponent.
- *
- * @return the public key.
- */
-pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) {
- var key = {
- n: n,
- e: e
- };
-
- /**
- * Encrypts the given data with this public key. Newer applications
- * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for
- * legacy applications.
- *
- * @param data the byte string to encrypt.
- * @param scheme the encryption scheme to use:
- * 'RSAES-PKCS1-V1_5' (default),
- * 'RSA-OAEP',
- * 'RAW', 'NONE', or null to perform raw RSA encryption,
- * an object with an 'encode' property set to a function
- * with the signature 'function(data, key)' that returns
- * a binary-encoded string representing the encoded data.
- * @param schemeOptions any scheme-specific options.
- *
- * @return the encrypted byte string.
- */
- key.encrypt = function(data, scheme, schemeOptions) {
- if(typeof scheme === 'string') {
- scheme = scheme.toUpperCase();
- } else if(scheme === undefined) {
- scheme = 'RSAES-PKCS1-V1_5';
- }
-
- if(scheme === 'RSAES-PKCS1-V1_5') {
- scheme = {
- encode: function(m, key, pub) {
- return _encodePkcs1_v1_5(m, key, 0x02).getBytes();
- }
- };
- } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
- scheme = {
- encode: function(m, key) {
- return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions);
- }
- };
- } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
- scheme = { encode: function(e) { return e; } };
- } else if(typeof scheme === 'string') {
- throw new Error('Unsupported encryption scheme: "' + scheme + '".');
- }
-
- // do scheme-based encoding then rsa encryption
- var e = scheme.encode(data, key, true);
- return pki.rsa.encrypt(e, key, true);
- };
-
- /**
- * Verifies the given signature against the given digest.
- *
- * PKCS#1 supports multiple (currently two) signature schemes:
- * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
- *
- * By default this implementation uses the "old scheme", i.e.
- * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the
- * signature is an OCTET STRING that holds a DigestInfo.
- *
- * DigestInfo ::= SEQUENCE {
- * digestAlgorithm DigestAlgorithmIdentifier,
- * digest Digest
- * }
- * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
- * Digest ::= OCTET STRING
- *
- * To perform PSS signature verification, provide an instance
- * of Forge PSS object as the scheme parameter.
- *
- * @param digest the message digest hash to compare against the signature,
- * as a binary-encoded string.
- * @param signature the signature to verify, as a binary-encoded string.
- * @param scheme signature verification scheme to use:
- * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
- * a Forge PSS object for RSASSA-PSS,
- * 'NONE' or null for none, DigestInfo will not be expected, but
- * PKCS#1 v1.5 padding will still be used.
- *
- * @return true if the signature was verified, false if not.
- */
- key.verify = function(digest, signature, scheme) {
- if(typeof scheme === 'string') {
- scheme = scheme.toUpperCase();
- } else if(scheme === undefined) {
- scheme = 'RSASSA-PKCS1-V1_5';
- }
-
- if(scheme === 'RSASSA-PKCS1-V1_5') {
- scheme = {
- verify: function(digest, d) {
- // remove padding
- d = _decodePkcs1_v1_5(d, key, true);
- // d is ASN.1 BER-encoded DigestInfo
- var obj = asn1.fromDer(d);
- // compare the given digest to the decrypted one
- return digest === obj.value[1].value;
- }
- };
- } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
- scheme = {
- verify: function(digest, d) {
- // remove padding
- d = _decodePkcs1_v1_5(d, key, true);
- return digest === d;
- }
- };
- }
-
- // do rsa decryption w/o any decoding, then verify -- which does decoding
- var d = pki.rsa.decrypt(signature, key, true, false);
- return scheme.verify(digest, d, key.n.bitLength());
- };
-
- return key;
-};
-
-/**
- * Sets an RSA private key from BigIntegers modulus, exponent, primes,
- * prime exponents, and modular multiplicative inverse.
- *
- * @param n the modulus.
- * @param e the public exponent.
- * @param d the private exponent ((inverse of e) mod n).
- * @param p the first prime.
- * @param q the second prime.
- * @param dP exponent1 (d mod (p-1)).
- * @param dQ exponent2 (d mod (q-1)).
- * @param qInv ((inverse of q) mod p)
- *
- * @return the private key.
- */
-pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function(
- n, e, d, p, q, dP, dQ, qInv) {
- var key = {
- n: n,
- e: e,
- d: d,
- p: p,
- q: q,
- dP: dP,
- dQ: dQ,
- qInv: qInv
- };
-
- /**
- * Decrypts the given data with this private key. The decryption scheme
- * must match the one used to encrypt the data.
- *
- * @param data the byte string to decrypt.
- * @param scheme the decryption scheme to use:
- * 'RSAES-PKCS1-V1_5' (default),
- * 'RSA-OAEP',
- * 'RAW', 'NONE', or null to perform raw RSA decryption.
- * @param schemeOptions any scheme-specific options.
- *
- * @return the decrypted byte string.
- */
- key.decrypt = function(data, scheme, schemeOptions) {
- if(typeof scheme === 'string') {
- scheme = scheme.toUpperCase();
- } else if(scheme === undefined) {
- scheme = 'RSAES-PKCS1-V1_5';
- }
-
- // do rsa decryption w/o any decoding
- var d = pki.rsa.decrypt(data, key, false, false);
-
- if(scheme === 'RSAES-PKCS1-V1_5') {
- scheme = { decode: _decodePkcs1_v1_5 };
- } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') {
- scheme = {
- decode: function(d, key) {
- return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions);
- }
- };
- } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) {
- scheme = { decode: function(d) { return d; } };
- } else {
- throw new Error('Unsupported encryption scheme: "' + scheme + '".');
- }
-
- // decode according to scheme
- return scheme.decode(d, key, false);
- };
-
- /**
- * Signs the given digest, producing a signature.
- *
- * PKCS#1 supports multiple (currently two) signature schemes:
- * RSASSA-PKCS1-V1_5 and RSASSA-PSS.
- *
- * By default this implementation uses the "old scheme", i.e.
- * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide
- * an instance of Forge PSS object as the scheme parameter.
- *
- * @param md the message digest object with the hash to sign.
- * @param scheme the signature scheme to use:
- * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5,
- * a Forge PSS object for RSASSA-PSS,
- * 'NONE' or null for none, DigestInfo will not be used but
- * PKCS#1 v1.5 padding will still be used.
- *
- * @return the signature as a byte string.
- */
- key.sign = function(md, scheme) {
- /* Note: The internal implementation of RSA operations is being
- transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy
- code like the use of an encoding block identifier 'bt' will eventually
- be removed. */
-
- // private key operation
- var bt = false;
-
- if(typeof scheme === 'string') {
- scheme = scheme.toUpperCase();
- }
-
- if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') {
- scheme = { encode: emsaPkcs1v15encode };
- bt = 0x01;
- } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) {
- scheme = { encode: function() { return md; } };
- bt = 0x01;
- }
-
- // encode and then encrypt
- var d = scheme.encode(md, key.n.bitLength());
- return pki.rsa.encrypt(d, key, bt);
- };
-
- return key;
-};
-
-/**
- * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object.
- *
- * @param rsaKey the ASN.1 RSAPrivateKey.
- *
- * @return the ASN.1 PrivateKeyInfo.
- */
-pki.wrapRsaPrivateKey = function(rsaKey) {
- // PrivateKeyInfo
- return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
- // version (0)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- asn1.integerToDer(0).getBytes()),
- // privateKeyAlgorithm
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
- asn1.create(
- asn1.Class.UNIVERSAL, asn1.Type.OID, false,
- asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
- ]),
- // PrivateKey
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false,
- asn1.toDer(rsaKey).getBytes())
- ]);
-};
-
-/**
- * Converts a private key from an ASN.1 object.
- *
- * @param obj the ASN.1 representation of a PrivateKeyInfo containing an
- * RSAPrivateKey or an RSAPrivateKey.
- *
- * @return the private key.
- */
-pki.privateKeyFromAsn1 = function(obj) {
- // get PrivateKeyInfo
- var capture = {};
- var errors = [];
- if(asn1.validate(obj, privateKeyValidator, capture, errors)) {
- obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey));
- }
-
- // get RSAPrivateKey
- capture = {};
- errors = [];
- if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) {
- var error = new Error('Cannot read private key. ' +
- 'ASN.1 object does not contain an RSAPrivateKey.');
- error.errors = errors;
- throw error;
- }
-
- // Note: Version is currently ignored.
- // capture.privateKeyVersion
- // FIXME: inefficient, get a BigInteger that uses byte strings
- var n, e, d, p, q, dP, dQ, qInv;
- n = forge.util.createBuffer(capture.privateKeyModulus).toHex();
- e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex();
- d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex();
- p = forge.util.createBuffer(capture.privateKeyPrime1).toHex();
- q = forge.util.createBuffer(capture.privateKeyPrime2).toHex();
- dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex();
- dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex();
- qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex();
-
- // set private key
- return pki.setRsaPrivateKey(
- new BigInteger(n, 16),
- new BigInteger(e, 16),
- new BigInteger(d, 16),
- new BigInteger(p, 16),
- new BigInteger(q, 16),
- new BigInteger(dP, 16),
- new BigInteger(dQ, 16),
- new BigInteger(qInv, 16));
-};
-
-/**
- * Converts a private key to an ASN.1 RSAPrivateKey.
- *
- * @param key the private key.
- *
- * @return the ASN.1 representation of an RSAPrivateKey.
- */
-pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) {
- // RSAPrivateKey
- return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
- // version (0 = only 2 primes, 1 multiple primes)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- asn1.integerToDer(0).getBytes()),
- // modulus (n)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.n)),
- // publicExponent (e)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.e)),
- // privateExponent (d)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.d)),
- // privateKeyPrime1 (p)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.p)),
- // privateKeyPrime2 (q)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.q)),
- // privateKeyExponent1 (dP)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.dP)),
- // privateKeyExponent2 (dQ)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.dQ)),
- // coefficient (qInv)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.qInv))
- ]);
-};
-
-/**
- * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey.
- *
- * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey.
- *
- * @return the public key.
- */
-pki.publicKeyFromAsn1 = function(obj) {
- // get SubjectPublicKeyInfo
- var capture = {};
- var errors = [];
- if(asn1.validate(obj, publicKeyValidator, capture, errors)) {
- // get oid
- var oid = asn1.derToOid(capture.publicKeyOid);
- if(oid !== pki.oids.rsaEncryption) {
- var error = new Error('Cannot read public key. Unknown OID.');
- error.oid = oid;
- throw error;
- }
- obj = capture.rsaPublicKey;
- }
-
- // get RSA params
- errors = [];
- if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) {
- var error = new Error('Cannot read public key. ' +
- 'ASN.1 object does not contain an RSAPublicKey.');
- error.errors = errors;
- throw error;
- }
-
- // FIXME: inefficient, get a BigInteger that uses byte strings
- var n = forge.util.createBuffer(capture.publicKeyModulus).toHex();
- var e = forge.util.createBuffer(capture.publicKeyExponent).toHex();
-
- // set public key
- return pki.setRsaPublicKey(
- new BigInteger(n, 16),
- new BigInteger(e, 16));
-};
-
-/**
- * Converts a public key to an ASN.1 SubjectPublicKeyInfo.
- *
- * @param key the public key.
- *
- * @return the asn1 representation of a SubjectPublicKeyInfo.
- */
-pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) {
- // SubjectPublicKeyInfo
- return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
- // AlgorithmIdentifier
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
- // algorithm
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
- asn1.oidToDer(pki.oids.rsaEncryption).getBytes()),
- // parameters (null)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
- ]),
- // subjectPublicKey
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [
- pki.publicKeyToRSAPublicKey(key)
- ])
- ]);
-};
-
-/**
- * Converts a public key to an ASN.1 RSAPublicKey.
- *
- * @param key the public key.
- *
- * @return the asn1 representation of a RSAPublicKey.
- */
-pki.publicKeyToRSAPublicKey = function(key) {
- // RSAPublicKey
- return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
- // modulus (n)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.n)),
- // publicExponent (e)
- asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
- _bnToBytes(key.e))
- ]);
-};
-
-/**
- * Encodes a message using PKCS#1 v1.5 padding.
- *
- * @param m the message to encode.
- * @param key the RSA key to use.
- * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02
- * (for encryption).
- *
- * @return the padded byte buffer.
- */
-function _encodePkcs1_v1_5(m, key, bt) {
- var eb = forge.util.createBuffer();
-
- // get the length of the modulus in bytes
- var k = Math.ceil(key.n.bitLength() / 8);
-
- /* use PKCS#1 v1.5 padding */
- if(m.length > (k - 11)) {
- var error = new Error('Message is too long for PKCS#1 v1.5 padding.');
- error.length = m.length;
- error.max = k - 11;
- throw error;
- }
-
- /* A block type BT, a padding string PS, and the data D shall be
- formatted into an octet string EB, the encryption block:
-
- EB = 00 || BT || PS || 00 || D
-
- The block type BT shall be a single octet indicating the structure of
- the encryption block. For this version of the document it shall have
- value 00, 01, or 02. For a private-key operation, the block type
- shall be 00 or 01. For a public-key operation, it shall be 02.
-
- The padding string PS shall consist of k-3-||D|| octets. For block
- type 00, the octets shall have value 00; for block type 01, they
- shall have value FF; and for block type 02, they shall be
- pseudorandomly generated and nonzero. This makes the length of the
- encryption block EB equal to k. */
-
- // build the encryption block
- eb.putByte(0x00);
- eb.putByte(bt);
-
- // create the padding
- var padNum = k - 3 - m.length;
- var padByte;
- // private key op
- if(bt === 0x00 || bt === 0x01) {
- padByte = (bt === 0x00) ? 0x00 : 0xFF;
- for(var i = 0; i < padNum; ++i) {
- eb.putByte(padByte);
- }
- } else {
- // public key op
- // pad with random non-zero values
- while(padNum > 0) {
- var numZeros = 0;
- var padBytes = forge.random.getBytes(padNum);
- for(var i = 0; i < padNum; ++i) {
- padByte = padBytes.charCodeAt(i);
- if(padByte === 0) {
- ++numZeros;
- } else {
- eb.putByte(padByte);
- }
- }
- padNum = numZeros;
- }
- }
-
- // zero followed by message
- eb.putByte(0x00);
- eb.putBytes(m);
-
- return eb;
-}
-
-/**
- * Decodes a message using PKCS#1 v1.5 padding.
- *
- * @param em the message to decode.
- * @param key the RSA key to use.
- * @param pub true if the key is a public key, false if it is private.
- * @param ml the message length, if specified.
- *
- * @return the decoded bytes.
- */
-function _decodePkcs1_v1_5(em, key, pub, ml) {
- // get the length of the modulus in bytes
- var k = Math.ceil(key.n.bitLength() / 8);
-
- /* It is an error if any of the following conditions occurs:
-
- 1. The encryption block EB cannot be parsed unambiguously.
- 2. The padding string PS consists of fewer than eight octets
- or is inconsisent with the block type BT.
- 3. The decryption process is a public-key operation and the block
- type BT is not 00 or 01, or the decryption process is a
- private-key operation and the block type is not 02.
- */
-
- // parse the encryption block
- var eb = forge.util.createBuffer(em);
- var first = eb.getByte();
- var bt = eb.getByte();
- if(first !== 0x00 ||
- (pub && bt !== 0x00 && bt !== 0x01) ||
- (!pub && bt != 0x02) ||
- (pub && bt === 0x00 && typeof(ml) === 'undefined')) {
- throw new Error('Encryption block is invalid.');
- }
-
- var padNum = 0;
- if(bt === 0x00) {
- // check all padding bytes for 0x00
- padNum = k - 3 - ml;
- for(var i = 0; i < padNum; ++i) {
- if(eb.getByte() !== 0x00) {
- throw new Error('Encryption block is invalid.');
- }
- }
- } else if(bt === 0x01) {
- // find the first byte that isn't 0xFF, should be after all padding
- padNum = 0;
- while(eb.length() > 1) {
- if(eb.getByte() !== 0xFF) {
- --eb.read;
- break;
- }
- ++padNum;
- }
- } else if(bt === 0x02) {
- // look for 0x00 byte
- padNum = 0;
- while(eb.length() > 1) {
- if(eb.getByte() === 0x00) {
- --eb.read;
- break;
- }
- ++padNum;
- }
- }
-
- // zero must be 0x00 and padNum must be (k - 3 - message length)
- var zero = eb.getByte();
- if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
- throw new Error('Encryption block is invalid.');
- }
-
- return eb.getBytes();
-}
-
-/**
- * Runs the key-generation algorithm asynchronously, either in the background
- * via Web Workers, or using the main thread and setImmediate.
- *
- * @param state the key-pair generation state.
- * @param [options] options for key-pair generation:
- * workerScript the worker script URL.
- * workers the number of web workers (if supported) to use,
- * (default: 2, -1 to use estimated cores minus one).
- * workLoad the size of the work load, ie: number of possible prime
- * numbers for each web worker to check per work assignment,
- * (default: 100).
- * @param callback(err, keypair) called once the operation completes.
- */
-function _generateKeyPair(state, options, callback) {
- if(typeof options === 'function') {
- callback = options;
- options = {};
- }
- options = options || {};
-
- var opts = {
- algorithm: {
- name: options.algorithm || 'PRIMEINC',
- options: {
- workers: options.workers || 2,
- workLoad: options.workLoad || 100,
- workerScript: options.workerScript
- }
- }
- };
- if('prng' in options) {
- opts.prng = options.prng;
- }
-
- generate();
-
- function generate() {
- // find p and then q (done in series to simplify)
- getPrime(state.pBits, function(err, num) {
- if(err) {
- return callback(err);
- }
- state.p = num;
- if(state.q !== null) {
- return finish(err, state.q);
- }
- getPrime(state.qBits, finish);
- });
- }
-
- function getPrime(bits, callback) {
- forge.prime.generateProbablePrime(bits, opts, callback);
- }
-
- function finish(err, num) {
- if(err) {
- return callback(err);
- }
-
- // set q
- state.q = num;
-
- // ensure p is larger than q (swap them if not)
- if(state.p.compareTo(state.q) < 0) {
- var tmp = state.p;
- state.p = state.q;
- state.q = tmp;
- }
-
- // ensure p is coprime with e
- if(state.p.subtract(BigInteger.ONE).gcd(state.e)
- .compareTo(BigInteger.ONE) !== 0) {
- state.p = null;
- generate();
- return;
- }
-
- // ensure q is coprime with e
- if(state.q.subtract(BigInteger.ONE).gcd(state.e)
- .compareTo(BigInteger.ONE) !== 0) {
- state.q = null;
- getPrime(state.qBits, finish);
- return;
- }
-
- // compute phi: (p - 1)(q - 1) (Euler's totient function)
- state.p1 = state.p.subtract(BigInteger.ONE);
- state.q1 = state.q.subtract(BigInteger.ONE);
- state.phi = state.p1.multiply(state.q1);
-
- // ensure e and phi are coprime
- if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
- // phi and e aren't coprime, so generate a new p and q
- state.p = state.q = null;
- generate();
- return;
- }
-
- // create n, ensure n is has the right number of bits
- state.n = state.p.multiply(state.q);
- if(state.n.bitLength() !== state.bits) {
- // failed, get new q
- state.q = null;
- getPrime(state.qBits, finish);
- return;
- }
-
- // set keys
- var d = state.e.modInverse(state.phi);
- state.keys = {
- privateKey: pki.rsa.setPrivateKey(
- state.n, state.e, d, state.p, state.q,
- d.mod(state.p1), d.mod(state.q1),
- state.q.modInverse(state.p)),
- publicKey: pki.rsa.setPublicKey(state.n, state.e)
- };
-
- callback(null, state.keys);
- }
-}
-
-/**
- * Converts a positive BigInteger into 2's-complement big-endian bytes.
- *
- * @param b the big integer to convert.
- *
- * @return the bytes.
- */
-function _bnToBytes(b) {
- // prepend 0x00 if first byte >= 0x80
- var hex = b.toString(16);
- if(hex[0] >= '8') {
- hex = '00' + hex;
- }
- return forge.util.hexToBytes(hex);
-}
-
-/**
- * Returns the required number of Miller-Rabin tests to generate a
- * prime with an error probability of (1/2)^80.
- *
- * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
- *
- * @param bits the bit size.
- *
- * @return the required number of iterations.
- */
-function _getMillerRabinTests(bits) {
- if(bits <= 100) return 27;
- if(bits <= 150) return 18;
- if(bits <= 200) return 15;
- if(bits <= 250) return 12;
- if(bits <= 300) return 9;
- if(bits <= 350) return 8;
- if(bits <= 400) return 7;
- if(bits <= 500) return 6;
- if(bits <= 600) return 5;
- if(bits <= 800) return 4;
- if(bits <= 1250) return 3;
- return 2;
-}
-
-} // end module implementation
-
-/* ########## Begin module wrapper ########## */
-var name = 'rsa';
-if(typeof define !== 'function') {
- // NodeJS -> AMD
- if(typeof module === 'object' && module.exports) {
- var nodeJS = true;
- define = function(ids, factory) {
- factory(require, module);
- };
- } else {
- // <script>
- if(typeof forge === 'undefined') {
- forge = {};
- }
- return initModule(forge);
- }
-}
-// AMD
-var deps;
-var defineFunc = function(require, module) {
- module.exports = function(forge) {
- var mods = deps.map(function(dep) {
- return require(dep);
- }).concat(initModule);
- // handle circular dependencies
- forge = forge || {};
- forge.defined = forge.defined || {};
- if(forge.defined[name]) {
- return forge[name];
- }
- forge.defined[name] = true;
- for(var i = 0; i < mods.length; ++i) {
- mods[i](forge);
- }
- return forge[name];
- };
-};
-var tmpDefine = define;
-define = function(ids, factory) {
- deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2);
- if(nodeJS) {
- delete define;
- return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0));
- }
- define = tmpDefine;
- return define.apply(null, Array.prototype.slice.call(arguments, 0));
-};
-define([
- 'require',
- 'module',
- './asn1',
- './jsbn',
- './oids',
- './pkcs1',
- './prime',
- './random',
- './util'
-], function() {
- defineFunc.apply(null, Array.prototype.slice.call(arguments, 0));
-});
-})();