diff options
Diffstat (limited to 'alarm/node_modules/node-forge/js/rsa.js')
-rw-r--r-- | alarm/node_modules/node-forge/js/rsa.js | 1712 |
1 files changed, 0 insertions, 1712 deletions
diff --git a/alarm/node_modules/node-forge/js/rsa.js b/alarm/node_modules/node-forge/js/rsa.js deleted file mode 100644 index 90f8c0a..0000000 --- a/alarm/node_modules/node-forge/js/rsa.js +++ /dev/null @@ -1,1712 +0,0 @@ -/** - * Javascript implementation of basic RSA algorithms. - * - * @author Dave Longley - * - * Copyright (c) 2010-2014 Digital Bazaar, Inc. - * - * The only algorithm currently supported for PKI is RSA. - * - * An RSA key is often stored in ASN.1 DER format. The SubjectPublicKeyInfo - * ASN.1 structure is composed of an algorithm of type AlgorithmIdentifier - * and a subjectPublicKey of type bit string. - * - * The AlgorithmIdentifier contains an Object Identifier (OID) and parameters - * for the algorithm, if any. In the case of RSA, there aren't any. - * - * SubjectPublicKeyInfo ::= SEQUENCE { - * algorithm AlgorithmIdentifier, - * subjectPublicKey BIT STRING - * } - * - * AlgorithmIdentifer ::= SEQUENCE { - * algorithm OBJECT IDENTIFIER, - * parameters ANY DEFINED BY algorithm OPTIONAL - * } - * - * For an RSA public key, the subjectPublicKey is: - * - * RSAPublicKey ::= SEQUENCE { - * modulus INTEGER, -- n - * publicExponent INTEGER -- e - * } - * - * PrivateKeyInfo ::= SEQUENCE { - * version Version, - * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, - * privateKey PrivateKey, - * attributes [0] IMPLICIT Attributes OPTIONAL - * } - * - * Version ::= INTEGER - * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier - * PrivateKey ::= OCTET STRING - * Attributes ::= SET OF Attribute - * - * An RSA private key as the following structure: - * - * RSAPrivateKey ::= SEQUENCE { - * version Version, - * modulus INTEGER, -- n - * publicExponent INTEGER, -- e - * privateExponent INTEGER, -- d - * prime1 INTEGER, -- p - * prime2 INTEGER, -- q - * exponent1 INTEGER, -- d mod (p-1) - * exponent2 INTEGER, -- d mod (q-1) - * coefficient INTEGER -- (inverse of q) mod p - * } - * - * Version ::= INTEGER - * - * The OID for the RSA key algorithm is: 1.2.840.113549.1.1.1 - */ -(function() { -function initModule(forge) { -/* ########## Begin module implementation ########## */ - -if(typeof BigInteger === 'undefined') { - var BigInteger = forge.jsbn.BigInteger; -} - -// shortcut for asn.1 API -var asn1 = forge.asn1; - -/* - * RSA encryption and decryption, see RFC 2313. - */ -forge.pki = forge.pki || {}; -forge.pki.rsa = forge.rsa = forge.rsa || {}; -var pki = forge.pki; - -// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29 -var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; - -// validator for a PrivateKeyInfo structure -var privateKeyValidator = { - // PrivateKeyInfo - name: 'PrivateKeyInfo', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - value: [{ - // Version (INTEGER) - name: 'PrivateKeyInfo.version', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyVersion' - }, { - // privateKeyAlgorithm - name: 'PrivateKeyInfo.privateKeyAlgorithm', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - value: [{ - name: 'AlgorithmIdentifier.algorithm', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.OID, - constructed: false, - capture: 'privateKeyOid' - }] - }, { - // PrivateKey - name: 'PrivateKeyInfo', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.OCTETSTRING, - constructed: false, - capture: 'privateKey' - }] -}; - -// validator for an RSA private key -var rsaPrivateKeyValidator = { - // RSAPrivateKey - name: 'RSAPrivateKey', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - value: [{ - // Version (INTEGER) - name: 'RSAPrivateKey.version', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyVersion' - }, { - // modulus (n) - name: 'RSAPrivateKey.modulus', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyModulus' - }, { - // publicExponent (e) - name: 'RSAPrivateKey.publicExponent', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyPublicExponent' - }, { - // privateExponent (d) - name: 'RSAPrivateKey.privateExponent', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyPrivateExponent' - }, { - // prime1 (p) - name: 'RSAPrivateKey.prime1', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyPrime1' - }, { - // prime2 (q) - name: 'RSAPrivateKey.prime2', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyPrime2' - }, { - // exponent1 (d mod (p-1)) - name: 'RSAPrivateKey.exponent1', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyExponent1' - }, { - // exponent2 (d mod (q-1)) - name: 'RSAPrivateKey.exponent2', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyExponent2' - }, { - // coefficient ((inverse of q) mod p) - name: 'RSAPrivateKey.coefficient', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'privateKeyCoefficient' - }] -}; - -// validator for an RSA public key -var rsaPublicKeyValidator = { - // RSAPublicKey - name: 'RSAPublicKey', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - value: [{ - // modulus (n) - name: 'RSAPublicKey.modulus', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'publicKeyModulus' - }, { - // publicExponent (e) - name: 'RSAPublicKey.exponent', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.INTEGER, - constructed: false, - capture: 'publicKeyExponent' - }] -}; - -// validator for an SubjectPublicKeyInfo structure -// Note: Currently only works with an RSA public key -var publicKeyValidator = forge.pki.rsa.publicKeyValidator = { - name: 'SubjectPublicKeyInfo', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - captureAsn1: 'subjectPublicKeyInfo', - value: [{ - name: 'SubjectPublicKeyInfo.AlgorithmIdentifier', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - value: [{ - name: 'AlgorithmIdentifier.algorithm', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.OID, - constructed: false, - capture: 'publicKeyOid' - }] - }, { - // subjectPublicKey - name: 'SubjectPublicKeyInfo.subjectPublicKey', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.BITSTRING, - constructed: false, - value: [{ - // RSAPublicKey - name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey', - tagClass: asn1.Class.UNIVERSAL, - type: asn1.Type.SEQUENCE, - constructed: true, - optional: true, - captureAsn1: 'rsaPublicKey' - }] - }] -}; - -/** - * Wrap digest in DigestInfo object. - * - * This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447. - * - * DigestInfo ::= SEQUENCE { - * digestAlgorithm DigestAlgorithmIdentifier, - * digest Digest - * } - * - * DigestAlgorithmIdentifier ::= AlgorithmIdentifier - * Digest ::= OCTET STRING - * - * @param md the message digest object with the hash to sign. - * - * @return the encoded message (ready for RSA encrytion) - */ -var emsaPkcs1v15encode = function(md) { - // get the oid for the algorithm - var oid; - if(md.algorithm in pki.oids) { - oid = pki.oids[md.algorithm]; - } else { - var error = new Error('Unknown message digest algorithm.'); - error.algorithm = md.algorithm; - throw error; - } - var oidBytes = asn1.oidToDer(oid).getBytes(); - - // create the digest info - var digestInfo = asn1.create( - asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); - var digestAlgorithm = asn1.create( - asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []); - digestAlgorithm.value.push(asn1.create( - asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes)); - digestAlgorithm.value.push(asn1.create( - asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')); - var digest = asn1.create( - asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, - false, md.digest().getBytes()); - digestInfo.value.push(digestAlgorithm); - digestInfo.value.push(digest); - - // encode digest info - return asn1.toDer(digestInfo).getBytes(); -}; - -/** - * Performs x^c mod n (RSA encryption or decryption operation). - * - * @param x the number to raise and mod. - * @param key the key to use. - * @param pub true if the key is public, false if private. - * - * @return the result of x^c mod n. - */ -var _modPow = function(x, key, pub) { - if(pub) { - return x.modPow(key.e, key.n); - } - - if(!key.p || !key.q) { - // allow calculation without CRT params (slow) - return x.modPow(key.d, key.n); - } - - // pre-compute dP, dQ, and qInv if necessary - if(!key.dP) { - key.dP = key.d.mod(key.p.subtract(BigInteger.ONE)); - } - if(!key.dQ) { - key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE)); - } - if(!key.qInv) { - key.qInv = key.q.modInverse(key.p); - } - - /* Chinese remainder theorem (CRT) states: - - Suppose n1, n2, ..., nk are positive integers which are pairwise - coprime (n1 and n2 have no common factors other than 1). For any - integers x1, x2, ..., xk there exists an integer x solving the - system of simultaneous congruences (where ~= means modularly - congruent so a ~= b mod n means a mod n = b mod n): - - x ~= x1 mod n1 - x ~= x2 mod n2 - ... - x ~= xk mod nk - - This system of congruences has a single simultaneous solution x - between 0 and n - 1. Furthermore, each xk solution and x itself - is congruent modulo the product n = n1*n2*...*nk. - So x1 mod n = x2 mod n = xk mod n = x mod n. - - The single simultaneous solution x can be solved with the following - equation: - - x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni. - - Where x is less than n, xi = x mod ni. - - For RSA we are only concerned with k = 2. The modulus n = pq, where - p and q are coprime. The RSA decryption algorithm is: - - y = x^d mod n - - Given the above: - - x1 = x^d mod p - r1 = n/p = q - s1 = q^-1 mod p - x2 = x^d mod q - r2 = n/q = p - s2 = p^-1 mod q - - So y = (x1r1s1 + x2r2s2) mod n - = ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n - - According to Fermat's Little Theorem, if the modulus P is prime, - for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P. - Since A is not divisible by P it follows that if: - N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore: - - A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort - to calculate). In order to calculate x^d mod p more quickly the - exponent d mod (p - 1) is stored in the RSA private key (the same - is done for x^d mod q). These values are referred to as dP and dQ - respectively. Therefore we now have: - - y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n - - Since we'll be reducing x^dP by modulo p (same for q) we can also - reduce x by p (and q respectively) before hand. Therefore, let - - xp = ((x mod p)^dP mod p), and - xq = ((x mod q)^dQ mod q), yielding: - - y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n - - This can be further reduced to a simple algorithm that only - requires 1 inverse (the q inverse is used) to be used and stored. - The algorithm is called Garner's algorithm. If qInv is the - inverse of q, we simply calculate: - - y = (qInv*(xp - xq) mod p) * q + xq - - However, there are two further complications. First, we need to - ensure that xp > xq to prevent signed BigIntegers from being used - so we add p until this is true (since we will be mod'ing with - p anyway). Then, there is a known timing attack on algorithms - using the CRT. To mitigate this risk, "cryptographic blinding" - should be used. This requires simply generating a random number r between - 0 and n-1 and its inverse and multiplying x by r^e before calculating y - and then multiplying y by r^-1 afterwards. - */ - - // cryptographic blinding - var r; - do { - r = new BigInteger( - forge.util.bytesToHex(forge.random.getBytes(key.n.bitLength() / 8)), - 16).mod(key.n); - } while(r.equals(BigInteger.ZERO)); - x = x.multiply(r.modPow(key.e, key.n)).mod(key.n); - - // calculate xp and xq - var xp = x.mod(key.p).modPow(key.dP, key.p); - var xq = x.mod(key.q).modPow(key.dQ, key.q); - - // xp must be larger than xq to avoid signed bit usage - while(xp.compareTo(xq) < 0) { - xp = xp.add(key.p); - } - - // do last step - var y = xp.subtract(xq) - .multiply(key.qInv).mod(key.p) - .multiply(key.q).add(xq); - - // remove effect of random for cryptographic blinding - y = y.multiply(r.modInverse(key.n)).mod(key.n); - - return y; -}; - -/** - * NOTE: THIS METHOD IS DEPRECATED, use 'sign' on a private key object or - * 'encrypt' on a public key object instead. - * - * Performs RSA encryption. - * - * The parameter bt controls whether to put padding bytes before the - * message passed in. Set bt to either true or false to disable padding - * completely (in order to handle e.g. EMSA-PSS encoding seperately before), - * signaling whether the encryption operation is a public key operation - * (i.e. encrypting data) or not, i.e. private key operation (data signing). - * - * For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01 - * (for signing) or 0x02 (for encryption). The key operation mode (private - * or public) is derived from this flag in that case). - * - * @param m the message to encrypt as a byte string. - * @param key the RSA key to use. - * @param bt for PKCS#1 v1.5 padding, the block type to use - * (0x01 for private key, 0x02 for public), - * to disable padding: true = public key, false = private key. - * - * @return the encrypted bytes as a string. - */ -pki.rsa.encrypt = function(m, key, bt) { - var pub = bt; - var eb; - - // get the length of the modulus in bytes - var k = Math.ceil(key.n.bitLength() / 8); - - if(bt !== false && bt !== true) { - // legacy, default to PKCS#1 v1.5 padding - pub = (bt === 0x02); - eb = _encodePkcs1_v1_5(m, key, bt); - } else { - eb = forge.util.createBuffer(); - eb.putBytes(m); - } - - // load encryption block as big integer 'x' - // FIXME: hex conversion inefficient, get BigInteger w/byte strings - var x = new BigInteger(eb.toHex(), 16); - - // do RSA encryption - var y = _modPow(x, key, pub); - - // convert y into the encrypted data byte string, if y is shorter in - // bytes than k, then prepend zero bytes to fill up ed - // FIXME: hex conversion inefficient, get BigInteger w/byte strings - var yhex = y.toString(16); - var ed = forge.util.createBuffer(); - var zeros = k - Math.ceil(yhex.length / 2); - while(zeros > 0) { - ed.putByte(0x00); - --zeros; - } - ed.putBytes(forge.util.hexToBytes(yhex)); - return ed.getBytes(); -}; - -/** - * NOTE: THIS METHOD IS DEPRECATED, use 'decrypt' on a private key object or - * 'verify' on a public key object instead. - * - * Performs RSA decryption. - * - * The parameter ml controls whether to apply PKCS#1 v1.5 padding - * or not. Set ml = false to disable padding removal completely - * (in order to handle e.g. EMSA-PSS later on) and simply pass back - * the RSA encryption block. - * - * @param ed the encrypted data to decrypt in as a byte string. - * @param key the RSA key to use. - * @param pub true for a public key operation, false for private. - * @param ml the message length, if known, false to disable padding. - * - * @return the decrypted message as a byte string. - */ -pki.rsa.decrypt = function(ed, key, pub, ml) { - // get the length of the modulus in bytes - var k = Math.ceil(key.n.bitLength() / 8); - - // error if the length of the encrypted data ED is not k - if(ed.length !== k) { - var error = new Error('Encrypted message length is invalid.'); - error.length = ed.length; - error.expected = k; - throw error; - } - - // convert encrypted data into a big integer - // FIXME: hex conversion inefficient, get BigInteger w/byte strings - var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16); - - // y must be less than the modulus or it wasn't the result of - // a previous mod operation (encryption) using that modulus - if(y.compareTo(key.n) >= 0) { - throw new Error('Encrypted message is invalid.'); - } - - // do RSA decryption - var x = _modPow(y, key, pub); - - // create the encryption block, if x is shorter in bytes than k, then - // prepend zero bytes to fill up eb - // FIXME: hex conversion inefficient, get BigInteger w/byte strings - var xhex = x.toString(16); - var eb = forge.util.createBuffer(); - var zeros = k - Math.ceil(xhex.length / 2); - while(zeros > 0) { - eb.putByte(0x00); - --zeros; - } - eb.putBytes(forge.util.hexToBytes(xhex)); - - if(ml !== false) { - // legacy, default to PKCS#1 v1.5 padding - return _decodePkcs1_v1_5(eb.getBytes(), key, pub); - } - - // return message - return eb.getBytes(); -}; - -/** - * Creates an RSA key-pair generation state object. It is used to allow - * key-generation to be performed in steps. It also allows for a UI to - * display progress updates. - * - * @param bits the size for the private key in bits, defaults to 2048. - * @param e the public exponent to use, defaults to 65537 (0x10001). - * @param [options] the options to use. - * prng a custom crypto-secure pseudo-random number generator to use, - * that must define "getBytesSync". - * algorithm the algorithm to use (default: 'PRIMEINC'). - * - * @return the state object to use to generate the key-pair. - */ -pki.rsa.createKeyPairGenerationState = function(bits, e, options) { - // TODO: migrate step-based prime generation code to forge.prime - - // set default bits - if(typeof(bits) === 'string') { - bits = parseInt(bits, 10); - } - bits = bits || 2048; - - // create prng with api that matches BigInteger secure random - options = options || {}; - var prng = options.prng || forge.random; - var rng = { - // x is an array to fill with bytes - nextBytes: function(x) { - var b = prng.getBytesSync(x.length); - for(var i = 0; i < x.length; ++i) { - x[i] = b.charCodeAt(i); - } - } - }; - - var algorithm = options.algorithm || 'PRIMEINC'; - - // create PRIMEINC algorithm state - var rval; - if(algorithm === 'PRIMEINC') { - rval = { - algorithm: algorithm, - state: 0, - bits: bits, - rng: rng, - eInt: e || 65537, - e: new BigInteger(null), - p: null, - q: null, - qBits: bits >> 1, - pBits: bits - (bits >> 1), - pqState: 0, - num: null, - keys: null - }; - rval.e.fromInt(rval.eInt); - } else { - throw new Error('Invalid key generation algorithm: ' + algorithm); - } - - return rval; -}; - -/** - * Attempts to runs the key-generation algorithm for at most n seconds - * (approximately) using the given state. When key-generation has completed, - * the keys will be stored in state.keys. - * - * To use this function to update a UI while generating a key or to prevent - * causing browser lockups/warnings, set "n" to a value other than 0. A - * simple pattern for generating a key and showing a progress indicator is: - * - * var state = pki.rsa.createKeyPairGenerationState(2048); - * var step = function() { - * // step key-generation, run algorithm for 100 ms, repeat - * if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) { - * setTimeout(step, 1); - * } else { - * // key-generation complete - * // TODO: turn off progress indicator here - * // TODO: use the generated key-pair in "state.keys" - * } - * }; - * // TODO: turn on progress indicator here - * setTimeout(step, 0); - * - * @param state the state to use. - * @param n the maximum number of milliseconds to run the algorithm for, 0 - * to run the algorithm to completion. - * - * @return true if the key-generation completed, false if not. - */ -pki.rsa.stepKeyPairGenerationState = function(state, n) { - // set default algorithm if not set - if(!('algorithm' in state)) { - state.algorithm = 'PRIMEINC'; - } - - // TODO: migrate step-based prime generation code to forge.prime - // TODO: abstract as PRIMEINC algorithm - - // do key generation (based on Tom Wu's rsa.js, see jsbn.js license) - // with some minor optimizations and designed to run in steps - - // local state vars - var THIRTY = new BigInteger(null); - THIRTY.fromInt(30); - var deltaIdx = 0; - var op_or = function(x,y) { return x|y; }; - - // keep stepping until time limit is reached or done - var t1 = +new Date(); - var t2; - var total = 0; - while(state.keys === null && (n <= 0 || total < n)) { - // generate p or q - if(state.state === 0) { - /* Note: All primes are of the form: - - 30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i - - When we generate a random number, we always align it at 30k + 1. Each - time the number is determined not to be prime we add to get to the - next 'i', eg: if the number was at 30k + 1 we add 6. */ - var bits = (state.p === null) ? state.pBits : state.qBits; - var bits1 = bits - 1; - - // get a random number - if(state.pqState === 0) { - state.num = new BigInteger(bits, state.rng); - // force MSB set - if(!state.num.testBit(bits1)) { - state.num.bitwiseTo( - BigInteger.ONE.shiftLeft(bits1), op_or, state.num); - } - // align number on 30k+1 boundary - state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0); - deltaIdx = 0; - - ++state.pqState; - } else if(state.pqState === 1) { - // try to make the number a prime - if(state.num.bitLength() > bits) { - // overflow, try again - state.pqState = 0; - // do primality test - } else if(state.num.isProbablePrime( - _getMillerRabinTests(state.num.bitLength()))) { - ++state.pqState; - } else { - // get next potential prime - state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); - } - } else if(state.pqState === 2) { - // ensure number is coprime with e - state.pqState = - (state.num.subtract(BigInteger.ONE).gcd(state.e) - .compareTo(BigInteger.ONE) === 0) ? 3 : 0; - } else if(state.pqState === 3) { - // store p or q - state.pqState = 0; - if(state.p === null) { - state.p = state.num; - } else { - state.q = state.num; - } - - // advance state if both p and q are ready - if(state.p !== null && state.q !== null) { - ++state.state; - } - state.num = null; - } - } else if(state.state === 1) { - // ensure p is larger than q (swap them if not) - if(state.p.compareTo(state.q) < 0) { - state.num = state.p; - state.p = state.q; - state.q = state.num; - } - ++state.state; - } else if(state.state === 2) { - // compute phi: (p - 1)(q - 1) (Euler's totient function) - state.p1 = state.p.subtract(BigInteger.ONE); - state.q1 = state.q.subtract(BigInteger.ONE); - state.phi = state.p1.multiply(state.q1); - ++state.state; - } else if(state.state === 3) { - // ensure e and phi are coprime - if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) { - // phi and e are coprime, advance - ++state.state; - } else { - // phi and e aren't coprime, so generate a new p and q - state.p = null; - state.q = null; - state.state = 0; - } - } else if(state.state === 4) { - // create n, ensure n is has the right number of bits - state.n = state.p.multiply(state.q); - - // ensure n is right number of bits - if(state.n.bitLength() === state.bits) { - // success, advance - ++state.state; - } else { - // failed, get new q - state.q = null; - state.state = 0; - } - } else if(state.state === 5) { - // set keys - var d = state.e.modInverse(state.phi); - state.keys = { - privateKey: pki.rsa.setPrivateKey( - state.n, state.e, d, state.p, state.q, - d.mod(state.p1), d.mod(state.q1), - state.q.modInverse(state.p)), - publicKey: pki.rsa.setPublicKey(state.n, state.e) - }; - } - - // update timing - t2 = +new Date(); - total += t2 - t1; - t1 = t2; - } - - return state.keys !== null; -}; - -/** - * Generates an RSA public-private key pair in a single call. - * - * To generate a key-pair in steps (to allow for progress updates and to - * prevent blocking or warnings in slow browsers) then use the key-pair - * generation state functions. - * - * To generate a key-pair asynchronously (either through web-workers, if - * available, or by breaking up the work on the main thread), pass a - * callback function. - * - * @param [bits] the size for the private key in bits, defaults to 2048. - * @param [e] the public exponent to use, defaults to 65537. - * @param [options] options for key-pair generation, if given then 'bits' - * and 'e' must *not* be given: - * bits the size for the private key in bits, (default: 2048). - * e the public exponent to use, (default: 65537 (0x10001)). - * workerScript the worker script URL. - * workers the number of web workers (if supported) to use, - * (default: 2). - * workLoad the size of the work load, ie: number of possible prime - * numbers for each web worker to check per work assignment, - * (default: 100). - * e the public exponent to use, defaults to 65537. - * prng a custom crypto-secure pseudo-random number generator to use, - * that must define "getBytesSync". - * algorithm the algorithm to use (default: 'PRIMEINC'). - * @param [callback(err, keypair)] called once the operation completes. - * - * @return an object with privateKey and publicKey properties. - */ -pki.rsa.generateKeyPair = function(bits, e, options, callback) { - // (bits), (options), (callback) - if(arguments.length === 1) { - if(typeof bits === 'object') { - options = bits; - bits = undefined; - } else if(typeof bits === 'function') { - callback = bits; - bits = undefined; - } - } else if(arguments.length === 2) { - // (bits, e), (bits, options), (bits, callback), (options, callback) - if(typeof bits === 'number') { - if(typeof e === 'function') { - callback = e; - e = undefined; - } else if(typeof e !== 'number') { - options = e; - e = undefined; - } - } else { - options = bits; - callback = e; - bits = undefined; - e = undefined; - } - } else if(arguments.length === 3) { - // (bits, e, options), (bits, e, callback), (bits, options, callback) - if(typeof e === 'number') { - if(typeof options === 'function') { - callback = options; - options = undefined; - } - } else { - callback = options; - options = e; - e = undefined; - } - } - options = options || {}; - if(bits === undefined) { - bits = options.bits || 2048; - } - if(e === undefined) { - e = options.e || 0x10001; - } - var state = pki.rsa.createKeyPairGenerationState(bits, e, options); - if(!callback) { - pki.rsa.stepKeyPairGenerationState(state, 0); - return state.keys; - } - _generateKeyPair(state, options, callback); -}; - -/** - * Sets an RSA public key from BigIntegers modulus and exponent. - * - * @param n the modulus. - * @param e the exponent. - * - * @return the public key. - */ -pki.setRsaPublicKey = pki.rsa.setPublicKey = function(n, e) { - var key = { - n: n, - e: e - }; - - /** - * Encrypts the given data with this public key. Newer applications - * should use the 'RSA-OAEP' decryption scheme, 'RSAES-PKCS1-V1_5' is for - * legacy applications. - * - * @param data the byte string to encrypt. - * @param scheme the encryption scheme to use: - * 'RSAES-PKCS1-V1_5' (default), - * 'RSA-OAEP', - * 'RAW', 'NONE', or null to perform raw RSA encryption, - * an object with an 'encode' property set to a function - * with the signature 'function(data, key)' that returns - * a binary-encoded string representing the encoded data. - * @param schemeOptions any scheme-specific options. - * - * @return the encrypted byte string. - */ - key.encrypt = function(data, scheme, schemeOptions) { - if(typeof scheme === 'string') { - scheme = scheme.toUpperCase(); - } else if(scheme === undefined) { - scheme = 'RSAES-PKCS1-V1_5'; - } - - if(scheme === 'RSAES-PKCS1-V1_5') { - scheme = { - encode: function(m, key, pub) { - return _encodePkcs1_v1_5(m, key, 0x02).getBytes(); - } - }; - } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { - scheme = { - encode: function(m, key) { - return forge.pkcs1.encode_rsa_oaep(key, m, schemeOptions); - } - }; - } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { - scheme = { encode: function(e) { return e; } }; - } else if(typeof scheme === 'string') { - throw new Error('Unsupported encryption scheme: "' + scheme + '".'); - } - - // do scheme-based encoding then rsa encryption - var e = scheme.encode(data, key, true); - return pki.rsa.encrypt(e, key, true); - }; - - /** - * Verifies the given signature against the given digest. - * - * PKCS#1 supports multiple (currently two) signature schemes: - * RSASSA-PKCS1-V1_5 and RSASSA-PSS. - * - * By default this implementation uses the "old scheme", i.e. - * RSASSA-PKCS1-V1_5, in which case once RSA-decrypted, the - * signature is an OCTET STRING that holds a DigestInfo. - * - * DigestInfo ::= SEQUENCE { - * digestAlgorithm DigestAlgorithmIdentifier, - * digest Digest - * } - * DigestAlgorithmIdentifier ::= AlgorithmIdentifier - * Digest ::= OCTET STRING - * - * To perform PSS signature verification, provide an instance - * of Forge PSS object as the scheme parameter. - * - * @param digest the message digest hash to compare against the signature, - * as a binary-encoded string. - * @param signature the signature to verify, as a binary-encoded string. - * @param scheme signature verification scheme to use: - * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, - * a Forge PSS object for RSASSA-PSS, - * 'NONE' or null for none, DigestInfo will not be expected, but - * PKCS#1 v1.5 padding will still be used. - * - * @return true if the signature was verified, false if not. - */ - key.verify = function(digest, signature, scheme) { - if(typeof scheme === 'string') { - scheme = scheme.toUpperCase(); - } else if(scheme === undefined) { - scheme = 'RSASSA-PKCS1-V1_5'; - } - - if(scheme === 'RSASSA-PKCS1-V1_5') { - scheme = { - verify: function(digest, d) { - // remove padding - d = _decodePkcs1_v1_5(d, key, true); - // d is ASN.1 BER-encoded DigestInfo - var obj = asn1.fromDer(d); - // compare the given digest to the decrypted one - return digest === obj.value[1].value; - } - }; - } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { - scheme = { - verify: function(digest, d) { - // remove padding - d = _decodePkcs1_v1_5(d, key, true); - return digest === d; - } - }; - } - - // do rsa decryption w/o any decoding, then verify -- which does decoding - var d = pki.rsa.decrypt(signature, key, true, false); - return scheme.verify(digest, d, key.n.bitLength()); - }; - - return key; -}; - -/** - * Sets an RSA private key from BigIntegers modulus, exponent, primes, - * prime exponents, and modular multiplicative inverse. - * - * @param n the modulus. - * @param e the public exponent. - * @param d the private exponent ((inverse of e) mod n). - * @param p the first prime. - * @param q the second prime. - * @param dP exponent1 (d mod (p-1)). - * @param dQ exponent2 (d mod (q-1)). - * @param qInv ((inverse of q) mod p) - * - * @return the private key. - */ -pki.setRsaPrivateKey = pki.rsa.setPrivateKey = function( - n, e, d, p, q, dP, dQ, qInv) { - var key = { - n: n, - e: e, - d: d, - p: p, - q: q, - dP: dP, - dQ: dQ, - qInv: qInv - }; - - /** - * Decrypts the given data with this private key. The decryption scheme - * must match the one used to encrypt the data. - * - * @param data the byte string to decrypt. - * @param scheme the decryption scheme to use: - * 'RSAES-PKCS1-V1_5' (default), - * 'RSA-OAEP', - * 'RAW', 'NONE', or null to perform raw RSA decryption. - * @param schemeOptions any scheme-specific options. - * - * @return the decrypted byte string. - */ - key.decrypt = function(data, scheme, schemeOptions) { - if(typeof scheme === 'string') { - scheme = scheme.toUpperCase(); - } else if(scheme === undefined) { - scheme = 'RSAES-PKCS1-V1_5'; - } - - // do rsa decryption w/o any decoding - var d = pki.rsa.decrypt(data, key, false, false); - - if(scheme === 'RSAES-PKCS1-V1_5') { - scheme = { decode: _decodePkcs1_v1_5 }; - } else if(scheme === 'RSA-OAEP' || scheme === 'RSAES-OAEP') { - scheme = { - decode: function(d, key) { - return forge.pkcs1.decode_rsa_oaep(key, d, schemeOptions); - } - }; - } else if(['RAW', 'NONE', 'NULL', null].indexOf(scheme) !== -1) { - scheme = { decode: function(d) { return d; } }; - } else { - throw new Error('Unsupported encryption scheme: "' + scheme + '".'); - } - - // decode according to scheme - return scheme.decode(d, key, false); - }; - - /** - * Signs the given digest, producing a signature. - * - * PKCS#1 supports multiple (currently two) signature schemes: - * RSASSA-PKCS1-V1_5 and RSASSA-PSS. - * - * By default this implementation uses the "old scheme", i.e. - * RSASSA-PKCS1-V1_5. In order to generate a PSS signature, provide - * an instance of Forge PSS object as the scheme parameter. - * - * @param md the message digest object with the hash to sign. - * @param scheme the signature scheme to use: - * 'RSASSA-PKCS1-V1_5' or undefined for RSASSA PKCS#1 v1.5, - * a Forge PSS object for RSASSA-PSS, - * 'NONE' or null for none, DigestInfo will not be used but - * PKCS#1 v1.5 padding will still be used. - * - * @return the signature as a byte string. - */ - key.sign = function(md, scheme) { - /* Note: The internal implementation of RSA operations is being - transitioned away from a PKCS#1 v1.5 hard-coded scheme. Some legacy - code like the use of an encoding block identifier 'bt' will eventually - be removed. */ - - // private key operation - var bt = false; - - if(typeof scheme === 'string') { - scheme = scheme.toUpperCase(); - } - - if(scheme === undefined || scheme === 'RSASSA-PKCS1-V1_5') { - scheme = { encode: emsaPkcs1v15encode }; - bt = 0x01; - } else if(scheme === 'NONE' || scheme === 'NULL' || scheme === null) { - scheme = { encode: function() { return md; } }; - bt = 0x01; - } - - // encode and then encrypt - var d = scheme.encode(md, key.n.bitLength()); - return pki.rsa.encrypt(d, key, bt); - }; - - return key; -}; - -/** - * Wraps an RSAPrivateKey ASN.1 object in an ASN.1 PrivateKeyInfo object. - * - * @param rsaKey the ASN.1 RSAPrivateKey. - * - * @return the ASN.1 PrivateKeyInfo. - */ -pki.wrapRsaPrivateKey = function(rsaKey) { - // PrivateKeyInfo - return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ - // version (0) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - asn1.integerToDer(0).getBytes()), - // privateKeyAlgorithm - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ - asn1.create( - asn1.Class.UNIVERSAL, asn1.Type.OID, false, - asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') - ]), - // PrivateKey - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, - asn1.toDer(rsaKey).getBytes()) - ]); -}; - -/** - * Converts a private key from an ASN.1 object. - * - * @param obj the ASN.1 representation of a PrivateKeyInfo containing an - * RSAPrivateKey or an RSAPrivateKey. - * - * @return the private key. - */ -pki.privateKeyFromAsn1 = function(obj) { - // get PrivateKeyInfo - var capture = {}; - var errors = []; - if(asn1.validate(obj, privateKeyValidator, capture, errors)) { - obj = asn1.fromDer(forge.util.createBuffer(capture.privateKey)); - } - - // get RSAPrivateKey - capture = {}; - errors = []; - if(!asn1.validate(obj, rsaPrivateKeyValidator, capture, errors)) { - var error = new Error('Cannot read private key. ' + - 'ASN.1 object does not contain an RSAPrivateKey.'); - error.errors = errors; - throw error; - } - - // Note: Version is currently ignored. - // capture.privateKeyVersion - // FIXME: inefficient, get a BigInteger that uses byte strings - var n, e, d, p, q, dP, dQ, qInv; - n = forge.util.createBuffer(capture.privateKeyModulus).toHex(); - e = forge.util.createBuffer(capture.privateKeyPublicExponent).toHex(); - d = forge.util.createBuffer(capture.privateKeyPrivateExponent).toHex(); - p = forge.util.createBuffer(capture.privateKeyPrime1).toHex(); - q = forge.util.createBuffer(capture.privateKeyPrime2).toHex(); - dP = forge.util.createBuffer(capture.privateKeyExponent1).toHex(); - dQ = forge.util.createBuffer(capture.privateKeyExponent2).toHex(); - qInv = forge.util.createBuffer(capture.privateKeyCoefficient).toHex(); - - // set private key - return pki.setRsaPrivateKey( - new BigInteger(n, 16), - new BigInteger(e, 16), - new BigInteger(d, 16), - new BigInteger(p, 16), - new BigInteger(q, 16), - new BigInteger(dP, 16), - new BigInteger(dQ, 16), - new BigInteger(qInv, 16)); -}; - -/** - * Converts a private key to an ASN.1 RSAPrivateKey. - * - * @param key the private key. - * - * @return the ASN.1 representation of an RSAPrivateKey. - */ -pki.privateKeyToAsn1 = pki.privateKeyToRSAPrivateKey = function(key) { - // RSAPrivateKey - return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ - // version (0 = only 2 primes, 1 multiple primes) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - asn1.integerToDer(0).getBytes()), - // modulus (n) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.n)), - // publicExponent (e) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.e)), - // privateExponent (d) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.d)), - // privateKeyPrime1 (p) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.p)), - // privateKeyPrime2 (q) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.q)), - // privateKeyExponent1 (dP) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.dP)), - // privateKeyExponent2 (dQ) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.dQ)), - // coefficient (qInv) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.qInv)) - ]); -}; - -/** - * Converts a public key from an ASN.1 SubjectPublicKeyInfo or RSAPublicKey. - * - * @param obj the asn1 representation of a SubjectPublicKeyInfo or RSAPublicKey. - * - * @return the public key. - */ -pki.publicKeyFromAsn1 = function(obj) { - // get SubjectPublicKeyInfo - var capture = {}; - var errors = []; - if(asn1.validate(obj, publicKeyValidator, capture, errors)) { - // get oid - var oid = asn1.derToOid(capture.publicKeyOid); - if(oid !== pki.oids.rsaEncryption) { - var error = new Error('Cannot read public key. Unknown OID.'); - error.oid = oid; - throw error; - } - obj = capture.rsaPublicKey; - } - - // get RSA params - errors = []; - if(!asn1.validate(obj, rsaPublicKeyValidator, capture, errors)) { - var error = new Error('Cannot read public key. ' + - 'ASN.1 object does not contain an RSAPublicKey.'); - error.errors = errors; - throw error; - } - - // FIXME: inefficient, get a BigInteger that uses byte strings - var n = forge.util.createBuffer(capture.publicKeyModulus).toHex(); - var e = forge.util.createBuffer(capture.publicKeyExponent).toHex(); - - // set public key - return pki.setRsaPublicKey( - new BigInteger(n, 16), - new BigInteger(e, 16)); -}; - -/** - * Converts a public key to an ASN.1 SubjectPublicKeyInfo. - * - * @param key the public key. - * - * @return the asn1 representation of a SubjectPublicKeyInfo. - */ -pki.publicKeyToAsn1 = pki.publicKeyToSubjectPublicKeyInfo = function(key) { - // SubjectPublicKeyInfo - return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ - // AlgorithmIdentifier - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ - // algorithm - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false, - asn1.oidToDer(pki.oids.rsaEncryption).getBytes()), - // parameters (null) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') - ]), - // subjectPublicKey - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [ - pki.publicKeyToRSAPublicKey(key) - ]) - ]); -}; - -/** - * Converts a public key to an ASN.1 RSAPublicKey. - * - * @param key the public key. - * - * @return the asn1 representation of a RSAPublicKey. - */ -pki.publicKeyToRSAPublicKey = function(key) { - // RSAPublicKey - return asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ - // modulus (n) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.n)), - // publicExponent (e) - asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, - _bnToBytes(key.e)) - ]); -}; - -/** - * Encodes a message using PKCS#1 v1.5 padding. - * - * @param m the message to encode. - * @param key the RSA key to use. - * @param bt the block type to use, i.e. either 0x01 (for signing) or 0x02 - * (for encryption). - * - * @return the padded byte buffer. - */ -function _encodePkcs1_v1_5(m, key, bt) { - var eb = forge.util.createBuffer(); - - // get the length of the modulus in bytes - var k = Math.ceil(key.n.bitLength() / 8); - - /* use PKCS#1 v1.5 padding */ - if(m.length > (k - 11)) { - var error = new Error('Message is too long for PKCS#1 v1.5 padding.'); - error.length = m.length; - error.max = k - 11; - throw error; - } - - /* A block type BT, a padding string PS, and the data D shall be - formatted into an octet string EB, the encryption block: - - EB = 00 || BT || PS || 00 || D - - The block type BT shall be a single octet indicating the structure of - the encryption block. For this version of the document it shall have - value 00, 01, or 02. For a private-key operation, the block type - shall be 00 or 01. For a public-key operation, it shall be 02. - - The padding string PS shall consist of k-3-||D|| octets. For block - type 00, the octets shall have value 00; for block type 01, they - shall have value FF; and for block type 02, they shall be - pseudorandomly generated and nonzero. This makes the length of the - encryption block EB equal to k. */ - - // build the encryption block - eb.putByte(0x00); - eb.putByte(bt); - - // create the padding - var padNum = k - 3 - m.length; - var padByte; - // private key op - if(bt === 0x00 || bt === 0x01) { - padByte = (bt === 0x00) ? 0x00 : 0xFF; - for(var i = 0; i < padNum; ++i) { - eb.putByte(padByte); - } - } else { - // public key op - // pad with random non-zero values - while(padNum > 0) { - var numZeros = 0; - var padBytes = forge.random.getBytes(padNum); - for(var i = 0; i < padNum; ++i) { - padByte = padBytes.charCodeAt(i); - if(padByte === 0) { - ++numZeros; - } else { - eb.putByte(padByte); - } - } - padNum = numZeros; - } - } - - // zero followed by message - eb.putByte(0x00); - eb.putBytes(m); - - return eb; -} - -/** - * Decodes a message using PKCS#1 v1.5 padding. - * - * @param em the message to decode. - * @param key the RSA key to use. - * @param pub true if the key is a public key, false if it is private. - * @param ml the message length, if specified. - * - * @return the decoded bytes. - */ -function _decodePkcs1_v1_5(em, key, pub, ml) { - // get the length of the modulus in bytes - var k = Math.ceil(key.n.bitLength() / 8); - - /* It is an error if any of the following conditions occurs: - - 1. The encryption block EB cannot be parsed unambiguously. - 2. The padding string PS consists of fewer than eight octets - or is inconsisent with the block type BT. - 3. The decryption process is a public-key operation and the block - type BT is not 00 or 01, or the decryption process is a - private-key operation and the block type is not 02. - */ - - // parse the encryption block - var eb = forge.util.createBuffer(em); - var first = eb.getByte(); - var bt = eb.getByte(); - if(first !== 0x00 || - (pub && bt !== 0x00 && bt !== 0x01) || - (!pub && bt != 0x02) || - (pub && bt === 0x00 && typeof(ml) === 'undefined')) { - throw new Error('Encryption block is invalid.'); - } - - var padNum = 0; - if(bt === 0x00) { - // check all padding bytes for 0x00 - padNum = k - 3 - ml; - for(var i = 0; i < padNum; ++i) { - if(eb.getByte() !== 0x00) { - throw new Error('Encryption block is invalid.'); - } - } - } else if(bt === 0x01) { - // find the first byte that isn't 0xFF, should be after all padding - padNum = 0; - while(eb.length() > 1) { - if(eb.getByte() !== 0xFF) { - --eb.read; - break; - } - ++padNum; - } - } else if(bt === 0x02) { - // look for 0x00 byte - padNum = 0; - while(eb.length() > 1) { - if(eb.getByte() === 0x00) { - --eb.read; - break; - } - ++padNum; - } - } - - // zero must be 0x00 and padNum must be (k - 3 - message length) - var zero = eb.getByte(); - if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) { - throw new Error('Encryption block is invalid.'); - } - - return eb.getBytes(); -} - -/** - * Runs the key-generation algorithm asynchronously, either in the background - * via Web Workers, or using the main thread and setImmediate. - * - * @param state the key-pair generation state. - * @param [options] options for key-pair generation: - * workerScript the worker script URL. - * workers the number of web workers (if supported) to use, - * (default: 2, -1 to use estimated cores minus one). - * workLoad the size of the work load, ie: number of possible prime - * numbers for each web worker to check per work assignment, - * (default: 100). - * @param callback(err, keypair) called once the operation completes. - */ -function _generateKeyPair(state, options, callback) { - if(typeof options === 'function') { - callback = options; - options = {}; - } - options = options || {}; - - var opts = { - algorithm: { - name: options.algorithm || 'PRIMEINC', - options: { - workers: options.workers || 2, - workLoad: options.workLoad || 100, - workerScript: options.workerScript - } - } - }; - if('prng' in options) { - opts.prng = options.prng; - } - - generate(); - - function generate() { - // find p and then q (done in series to simplify) - getPrime(state.pBits, function(err, num) { - if(err) { - return callback(err); - } - state.p = num; - if(state.q !== null) { - return finish(err, state.q); - } - getPrime(state.qBits, finish); - }); - } - - function getPrime(bits, callback) { - forge.prime.generateProbablePrime(bits, opts, callback); - } - - function finish(err, num) { - if(err) { - return callback(err); - } - - // set q - state.q = num; - - // ensure p is larger than q (swap them if not) - if(state.p.compareTo(state.q) < 0) { - var tmp = state.p; - state.p = state.q; - state.q = tmp; - } - - // ensure p is coprime with e - if(state.p.subtract(BigInteger.ONE).gcd(state.e) - .compareTo(BigInteger.ONE) !== 0) { - state.p = null; - generate(); - return; - } - - // ensure q is coprime with e - if(state.q.subtract(BigInteger.ONE).gcd(state.e) - .compareTo(BigInteger.ONE) !== 0) { - state.q = null; - getPrime(state.qBits, finish); - return; - } - - // compute phi: (p - 1)(q - 1) (Euler's totient function) - state.p1 = state.p.subtract(BigInteger.ONE); - state.q1 = state.q.subtract(BigInteger.ONE); - state.phi = state.p1.multiply(state.q1); - - // ensure e and phi are coprime - if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) { - // phi and e aren't coprime, so generate a new p and q - state.p = state.q = null; - generate(); - return; - } - - // create n, ensure n is has the right number of bits - state.n = state.p.multiply(state.q); - if(state.n.bitLength() !== state.bits) { - // failed, get new q - state.q = null; - getPrime(state.qBits, finish); - return; - } - - // set keys - var d = state.e.modInverse(state.phi); - state.keys = { - privateKey: pki.rsa.setPrivateKey( - state.n, state.e, d, state.p, state.q, - d.mod(state.p1), d.mod(state.q1), - state.q.modInverse(state.p)), - publicKey: pki.rsa.setPublicKey(state.n, state.e) - }; - - callback(null, state.keys); - } -} - -/** - * Converts a positive BigInteger into 2's-complement big-endian bytes. - * - * @param b the big integer to convert. - * - * @return the bytes. - */ -function _bnToBytes(b) { - // prepend 0x00 if first byte >= 0x80 - var hex = b.toString(16); - if(hex[0] >= '8') { - hex = '00' + hex; - } - return forge.util.hexToBytes(hex); -} - -/** - * Returns the required number of Miller-Rabin tests to generate a - * prime with an error probability of (1/2)^80. - * - * See Handbook of Applied Cryptography Chapter 4, Table 4.4. - * - * @param bits the bit size. - * - * @return the required number of iterations. - */ -function _getMillerRabinTests(bits) { - if(bits <= 100) return 27; - if(bits <= 150) return 18; - if(bits <= 200) return 15; - if(bits <= 250) return 12; - if(bits <= 300) return 9; - if(bits <= 350) return 8; - if(bits <= 400) return 7; - if(bits <= 500) return 6; - if(bits <= 600) return 5; - if(bits <= 800) return 4; - if(bits <= 1250) return 3; - return 2; -} - -} // end module implementation - -/* ########## Begin module wrapper ########## */ -var name = 'rsa'; -if(typeof define !== 'function') { - // NodeJS -> AMD - if(typeof module === 'object' && module.exports) { - var nodeJS = true; - define = function(ids, factory) { - factory(require, module); - }; - } else { - // <script> - if(typeof forge === 'undefined') { - forge = {}; - } - return initModule(forge); - } -} -// AMD -var deps; -var defineFunc = function(require, module) { - module.exports = function(forge) { - var mods = deps.map(function(dep) { - return require(dep); - }).concat(initModule); - // handle circular dependencies - forge = forge || {}; - forge.defined = forge.defined || {}; - if(forge.defined[name]) { - return forge[name]; - } - forge.defined[name] = true; - for(var i = 0; i < mods.length; ++i) { - mods[i](forge); - } - return forge[name]; - }; -}; -var tmpDefine = define; -define = function(ids, factory) { - deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2); - if(nodeJS) { - delete define; - return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0)); - } - define = tmpDefine; - return define.apply(null, Array.prototype.slice.call(arguments, 0)); -}; -define([ - 'require', - 'module', - './asn1', - './jsbn', - './oids', - './pkcs1', - './prime', - './random', - './util' -], function() { - defineFunc.apply(null, Array.prototype.slice.call(arguments, 0)); -}); -})(); |