diff options
Diffstat (limited to 'alarm/node_modules/node-forge/js/jsbn.js')
-rw-r--r-- | alarm/node_modules/node-forge/js/jsbn.js | 1321 |
1 files changed, 0 insertions, 1321 deletions
diff --git a/alarm/node_modules/node-forge/js/jsbn.js b/alarm/node_modules/node-forge/js/jsbn.js deleted file mode 100644 index 6510139..0000000 --- a/alarm/node_modules/node-forge/js/jsbn.js +++ /dev/null @@ -1,1321 +0,0 @@ -// Copyright (c) 2005 Tom Wu -// All Rights Reserved. -// See "LICENSE" for details. - -// Basic JavaScript BN library - subset useful for RSA encryption. - -/* -Licensing (LICENSE) -------------------- - -This software is covered under the following copyright: -*/ -/* - * Copyright (c) 2003-2005 Tom Wu - * All Rights Reserved. - * - * Permission is hereby granted, free of charge, to any person obtaining - * a copy of this software and associated documentation files (the - * "Software"), to deal in the Software without restriction, including - * without limitation the rights to use, copy, modify, merge, publish, - * distribute, sublicense, and/or sell copies of the Software, and to - * permit persons to whom the Software is furnished to do so, subject to - * the following conditions: - * - * The above copyright notice and this permission notice shall be - * included in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, - * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY - * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. - * - * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, - * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER - * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF - * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT - * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - * - * In addition, the following condition applies: - * - * All redistributions must retain an intact copy of this copyright notice - * and disclaimer. - */ -/* -Address all questions regarding this license to: - - Tom Wu - tjw@cs.Stanford.EDU -*/ - -(function() { -/* ########## Begin module implementation ########## */ -function initModule(forge) { - -// Bits per digit -var dbits; - -// JavaScript engine analysis -var canary = 0xdeadbeefcafe; -var j_lm = ((canary&0xffffff)==0xefcafe); - -// (public) Constructor -function BigInteger(a,b,c) { - this.data = []; - if(a != null) - if("number" == typeof a) this.fromNumber(a,b,c); - else if(b == null && "string" != typeof a) this.fromString(a,256); - else this.fromString(a,b); -} - -// return new, unset BigInteger -function nbi() { return new BigInteger(null); } - -// am: Compute w_j += (x*this_i), propagate carries, -// c is initial carry, returns final carry. -// c < 3*dvalue, x < 2*dvalue, this_i < dvalue -// We need to select the fastest one that works in this environment. - -// am1: use a single mult and divide to get the high bits, -// max digit bits should be 26 because -// max internal value = 2*dvalue^2-2*dvalue (< 2^53) -function am1(i,x,w,j,c,n) { - while(--n >= 0) { - var v = x*this.data[i++]+w.data[j]+c; - c = Math.floor(v/0x4000000); - w.data[j++] = v&0x3ffffff; - } - return c; -} -// am2 avoids a big mult-and-extract completely. -// Max digit bits should be <= 30 because we do bitwise ops -// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) -function am2(i,x,w,j,c,n) { - var xl = x&0x7fff, xh = x>>15; - while(--n >= 0) { - var l = this.data[i]&0x7fff; - var h = this.data[i++]>>15; - var m = xh*l+h*xl; - l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff); - c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); - w.data[j++] = l&0x3fffffff; - } - return c; -} -// Alternately, set max digit bits to 28 since some -// browsers slow down when dealing with 32-bit numbers. -function am3(i,x,w,j,c,n) { - var xl = x&0x3fff, xh = x>>14; - while(--n >= 0) { - var l = this.data[i]&0x3fff; - var h = this.data[i++]>>14; - var m = xh*l+h*xl; - l = xl*l+((m&0x3fff)<<14)+w.data[j]+c; - c = (l>>28)+(m>>14)+xh*h; - w.data[j++] = l&0xfffffff; - } - return c; -} - -// node.js (no browser) -if(typeof(navigator) === 'undefined') -{ - BigInteger.prototype.am = am3; - dbits = 28; -} else if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { - BigInteger.prototype.am = am2; - dbits = 30; -} else if(j_lm && (navigator.appName != "Netscape")) { - BigInteger.prototype.am = am1; - dbits = 26; -} else { // Mozilla/Netscape seems to prefer am3 - BigInteger.prototype.am = am3; - dbits = 28; -} - -BigInteger.prototype.DB = dbits; -BigInteger.prototype.DM = ((1<<dbits)-1); -BigInteger.prototype.DV = (1<<dbits); - -var BI_FP = 52; -BigInteger.prototype.FV = Math.pow(2,BI_FP); -BigInteger.prototype.F1 = BI_FP-dbits; -BigInteger.prototype.F2 = 2*dbits-BI_FP; - -// Digit conversions -var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; -var BI_RC = new Array(); -var rr,vv; -rr = "0".charCodeAt(0); -for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; -rr = "a".charCodeAt(0); -for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; -rr = "A".charCodeAt(0); -for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; - -function int2char(n) { return BI_RM.charAt(n); } -function intAt(s,i) { - var c = BI_RC[s.charCodeAt(i)]; - return (c==null)?-1:c; -} - -// (protected) copy this to r -function bnpCopyTo(r) { - for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i]; - r.t = this.t; - r.s = this.s; -} - -// (protected) set from integer value x, -DV <= x < DV -function bnpFromInt(x) { - this.t = 1; - this.s = (x<0)?-1:0; - if(x > 0) this.data[0] = x; - else if(x < -1) this.data[0] = x+this.DV; - else this.t = 0; -} - -// return bigint initialized to value -function nbv(i) { var r = nbi(); r.fromInt(i); return r; } - -// (protected) set from string and radix -function bnpFromString(s,b) { - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 256) k = 8; // byte array - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else { this.fromRadix(s,b); return; } - this.t = 0; - this.s = 0; - var i = s.length, mi = false, sh = 0; - while(--i >= 0) { - var x = (k==8)?s[i]&0xff:intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-") mi = true; - continue; - } - mi = false; - if(sh == 0) - this.data[this.t++] = x; - else if(sh+k > this.DB) { - this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; - this.data[this.t++] = (x>>(this.DB-sh)); - } else - this.data[this.t-1] |= x<<sh; - sh += k; - if(sh >= this.DB) sh -= this.DB; - } - if(k == 8 && (s[0]&0x80) != 0) { - this.s = -1; - if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; - } - this.clamp(); - if(mi) BigInteger.ZERO.subTo(this,this); -} - -// (protected) clamp off excess high words -function bnpClamp() { - var c = this.s&this.DM; - while(this.t > 0 && this.data[this.t-1] == c) --this.t; -} - -// (public) return string representation in given radix -function bnToString(b) { - if(this.s < 0) return "-"+this.negate().toString(b); - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else return this.toRadix(b); - var km = (1<<k)-1, d, m = false, r = "", i = this.t; - var p = this.DB-(i*this.DB)%k; - if(i-- > 0) { - if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); } - while(i >= 0) { - if(p < k) { - d = (this.data[i]&((1<<p)-1))<<(k-p); - d |= this.data[--i]>>(p+=this.DB-k); - } else { - d = (this.data[i]>>(p-=k))&km; - if(p <= 0) { p += this.DB; --i; } - } - if(d > 0) m = true; - if(m) r += int2char(d); - } - } - return m?r:"0"; -} - -// (public) -this -function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } - -// (public) |this| -function bnAbs() { return (this.s<0)?this.negate():this; } - -// (public) return + if this > a, - if this < a, 0 if equal -function bnCompareTo(a) { - var r = this.s-a.s; - if(r != 0) return r; - var i = this.t; - r = i-a.t; - if(r != 0) return (this.s<0)?-r:r; - while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r; - return 0; -} - -// returns bit length of the integer x -function nbits(x) { - var r = 1, t; - if((t=x>>>16) != 0) { x = t; r += 16; } - if((t=x>>8) != 0) { x = t; r += 8; } - if((t=x>>4) != 0) { x = t; r += 4; } - if((t=x>>2) != 0) { x = t; r += 2; } - if((t=x>>1) != 0) { x = t; r += 1; } - return r; -} - -// (public) return the number of bits in "this" -function bnBitLength() { - if(this.t <= 0) return 0; - return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM)); -} - -// (protected) r = this << n*DB -function bnpDLShiftTo(n,r) { - var i; - for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i]; - for(i = n-1; i >= 0; --i) r.data[i] = 0; - r.t = this.t+n; - r.s = this.s; -} - -// (protected) r = this >> n*DB -function bnpDRShiftTo(n,r) { - for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i]; - r.t = Math.max(this.t-n,0); - r.s = this.s; -} - -// (protected) r = this << n -function bnpLShiftTo(n,r) { - var bs = n%this.DB; - var cbs = this.DB-bs; - var bm = (1<<cbs)-1; - var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; - for(i = this.t-1; i >= 0; --i) { - r.data[i+ds+1] = (this.data[i]>>cbs)|c; - c = (this.data[i]&bm)<<bs; - } - for(i = ds-1; i >= 0; --i) r.data[i] = 0; - r.data[ds] = c; - r.t = this.t+ds+1; - r.s = this.s; - r.clamp(); -} - -// (protected) r = this >> n -function bnpRShiftTo(n,r) { - r.s = this.s; - var ds = Math.floor(n/this.DB); - if(ds >= this.t) { r.t = 0; return; } - var bs = n%this.DB; - var cbs = this.DB-bs; - var bm = (1<<bs)-1; - r.data[0] = this.data[ds]>>bs; - for(var i = ds+1; i < this.t; ++i) { - r.data[i-ds-1] |= (this.data[i]&bm)<<cbs; - r.data[i-ds] = this.data[i]>>bs; - } - if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs; - r.t = this.t-ds; - r.clamp(); -} - -// (protected) r = this - a -function bnpSubTo(a,r) { - var i = 0, c = 0, m = Math.min(a.t,this.t); - while(i < m) { - c += this.data[i]-a.data[i]; - r.data[i++] = c&this.DM; - c >>= this.DB; - } - if(a.t < this.t) { - c -= a.s; - while(i < this.t) { - c += this.data[i]; - r.data[i++] = c&this.DM; - c >>= this.DB; - } - c += this.s; - } else { - c += this.s; - while(i < a.t) { - c -= a.data[i]; - r.data[i++] = c&this.DM; - c >>= this.DB; - } - c -= a.s; - } - r.s = (c<0)?-1:0; - if(c < -1) r.data[i++] = this.DV+c; - else if(c > 0) r.data[i++] = c; - r.t = i; - r.clamp(); -} - -// (protected) r = this * a, r != this,a (HAC 14.12) -// "this" should be the larger one if appropriate. -function bnpMultiplyTo(a,r) { - var x = this.abs(), y = a.abs(); - var i = x.t; - r.t = i+y.t; - while(--i >= 0) r.data[i] = 0; - for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t); - r.s = 0; - r.clamp(); - if(this.s != a.s) BigInteger.ZERO.subTo(r,r); -} - -// (protected) r = this^2, r != this (HAC 14.16) -function bnpSquareTo(r) { - var x = this.abs(); - var i = r.t = 2*x.t; - while(--i >= 0) r.data[i] = 0; - for(i = 0; i < x.t-1; ++i) { - var c = x.am(i,x.data[i],r,2*i,0,1); - if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { - r.data[i+x.t] -= x.DV; - r.data[i+x.t+1] = 1; - } - } - if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1); - r.s = 0; - r.clamp(); -} - -// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) -// r != q, this != m. q or r may be null. -function bnpDivRemTo(m,q,r) { - var pm = m.abs(); - if(pm.t <= 0) return; - var pt = this.abs(); - if(pt.t < pm.t) { - if(q != null) q.fromInt(0); - if(r != null) this.copyTo(r); - return; - } - if(r == null) r = nbi(); - var y = nbi(), ts = this.s, ms = m.s; - var nsh = this.DB-nbits(pm.data[pm.t-1]); // normalize modulus - if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } - var ys = y.t; - var y0 = y.data[ys-1]; - if(y0 == 0) return; - var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0); - var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; - var i = r.t, j = i-ys, t = (q==null)?nbi():q; - y.dlShiftTo(j,t); - if(r.compareTo(t) >= 0) { - r.data[r.t++] = 1; - r.subTo(t,r); - } - BigInteger.ONE.dlShiftTo(ys,t); - t.subTo(y,y); // "negative" y so we can replace sub with am later - while(y.t < ys) y.data[y.t++] = 0; - while(--j >= 0) { - // Estimate quotient digit - var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2); - if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out - y.dlShiftTo(j,t); - r.subTo(t,r); - while(r.data[i] < --qd) r.subTo(t,r); - } - } - if(q != null) { - r.drShiftTo(ys,q); - if(ts != ms) BigInteger.ZERO.subTo(q,q); - } - r.t = ys; - r.clamp(); - if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder - if(ts < 0) BigInteger.ZERO.subTo(r,r); -} - -// (public) this mod a -function bnMod(a) { - var r = nbi(); - this.abs().divRemTo(a,null,r); - if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); - return r; -} - -// Modular reduction using "classic" algorithm -function Classic(m) { this.m = m; } -function cConvert(x) { - if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); - else return x; -} -function cRevert(x) { return x; } -function cReduce(x) { x.divRemTo(this.m,null,x); } -function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } -function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -Classic.prototype.convert = cConvert; -Classic.prototype.revert = cRevert; -Classic.prototype.reduce = cReduce; -Classic.prototype.mulTo = cMulTo; -Classic.prototype.sqrTo = cSqrTo; - -// (protected) return "-1/this % 2^DB"; useful for Mont. reduction -// justification: -// xy == 1 (mod m) -// xy = 1+km -// xy(2-xy) = (1+km)(1-km) -// x[y(2-xy)] = 1-k^2m^2 -// x[y(2-xy)] == 1 (mod m^2) -// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 -// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. -// JS multiply "overflows" differently from C/C++, so care is needed here. -function bnpInvDigit() { - if(this.t < 1) return 0; - var x = this.data[0]; - if((x&1) == 0) return 0; - var y = x&3; // y == 1/x mod 2^2 - y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 - y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 - y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 - // last step - calculate inverse mod DV directly; - // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints - y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits - // we really want the negative inverse, and -DV < y < DV - return (y>0)?this.DV-y:-y; -} - -// Montgomery reduction -function Montgomery(m) { - this.m = m; - this.mp = m.invDigit(); - this.mpl = this.mp&0x7fff; - this.mph = this.mp>>15; - this.um = (1<<(m.DB-15))-1; - this.mt2 = 2*m.t; -} - -// xR mod m -function montConvert(x) { - var r = nbi(); - x.abs().dlShiftTo(this.m.t,r); - r.divRemTo(this.m,null,r); - if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); - return r; -} - -// x/R mod m -function montRevert(x) { - var r = nbi(); - x.copyTo(r); - this.reduce(r); - return r; -} - -// x = x/R mod m (HAC 14.32) -function montReduce(x) { - while(x.t <= this.mt2) // pad x so am has enough room later - x.data[x.t++] = 0; - for(var i = 0; i < this.m.t; ++i) { - // faster way of calculating u0 = x.data[i]*mp mod DV - var j = x.data[i]&0x7fff; - var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM; - // use am to combine the multiply-shift-add into one call - j = i+this.m.t; - x.data[j] += this.m.am(0,u0,x,i,0,this.m.t); - // propagate carry - while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; } - } - x.clamp(); - x.drShiftTo(this.m.t,x); - if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); -} - -// r = "x^2/R mod m"; x != r -function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -// r = "xy/R mod m"; x,y != r -function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - -Montgomery.prototype.convert = montConvert; -Montgomery.prototype.revert = montRevert; -Montgomery.prototype.reduce = montReduce; -Montgomery.prototype.mulTo = montMulTo; -Montgomery.prototype.sqrTo = montSqrTo; - -// (protected) true iff this is even -function bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; } - -// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) -function bnpExp(e,z) { - if(e > 0xffffffff || e < 1) return BigInteger.ONE; - var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; - g.copyTo(r); - while(--i >= 0) { - z.sqrTo(r,r2); - if((e&(1<<i)) > 0) z.mulTo(r2,g,r); - else { var t = r; r = r2; r2 = t; } - } - return z.revert(r); -} - -// (public) this^e % m, 0 <= e < 2^32 -function bnModPowInt(e,m) { - var z; - if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); - return this.exp(e,z); -} - -// protected -BigInteger.prototype.copyTo = bnpCopyTo; -BigInteger.prototype.fromInt = bnpFromInt; -BigInteger.prototype.fromString = bnpFromString; -BigInteger.prototype.clamp = bnpClamp; -BigInteger.prototype.dlShiftTo = bnpDLShiftTo; -BigInteger.prototype.drShiftTo = bnpDRShiftTo; -BigInteger.prototype.lShiftTo = bnpLShiftTo; -BigInteger.prototype.rShiftTo = bnpRShiftTo; -BigInteger.prototype.subTo = bnpSubTo; -BigInteger.prototype.multiplyTo = bnpMultiplyTo; -BigInteger.prototype.squareTo = bnpSquareTo; -BigInteger.prototype.divRemTo = bnpDivRemTo; -BigInteger.prototype.invDigit = bnpInvDigit; -BigInteger.prototype.isEven = bnpIsEven; -BigInteger.prototype.exp = bnpExp; - -// public -BigInteger.prototype.toString = bnToString; -BigInteger.prototype.negate = bnNegate; -BigInteger.prototype.abs = bnAbs; -BigInteger.prototype.compareTo = bnCompareTo; -BigInteger.prototype.bitLength = bnBitLength; -BigInteger.prototype.mod = bnMod; -BigInteger.prototype.modPowInt = bnModPowInt; - -// "constants" -BigInteger.ZERO = nbv(0); -BigInteger.ONE = nbv(1); - -// jsbn2 lib - -//Copyright (c) 2005-2009 Tom Wu -//All Rights Reserved. -//See "LICENSE" for details (See jsbn.js for LICENSE). - -//Extended JavaScript BN functions, required for RSA private ops. - -//Version 1.1: new BigInteger("0", 10) returns "proper" zero - -//(public) -function bnClone() { var r = nbi(); this.copyTo(r); return r; } - -//(public) return value as integer -function bnIntValue() { -if(this.s < 0) { - if(this.t == 1) return this.data[0]-this.DV; - else if(this.t == 0) return -1; -} else if(this.t == 1) return this.data[0]; -else if(this.t == 0) return 0; -// assumes 16 < DB < 32 -return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0]; -} - -//(public) return value as byte -function bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; } - -//(public) return value as short (assumes DB>=16) -function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; } - -//(protected) return x s.t. r^x < DV -function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } - -//(public) 0 if this == 0, 1 if this > 0 -function bnSigNum() { -if(this.s < 0) return -1; -else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0; -else return 1; -} - -//(protected) convert to radix string -function bnpToRadix(b) { -if(b == null) b = 10; -if(this.signum() == 0 || b < 2 || b > 36) return "0"; -var cs = this.chunkSize(b); -var a = Math.pow(b,cs); -var d = nbv(a), y = nbi(), z = nbi(), r = ""; -this.divRemTo(d,y,z); -while(y.signum() > 0) { - r = (a+z.intValue()).toString(b).substr(1) + r; - y.divRemTo(d,y,z); -} -return z.intValue().toString(b) + r; -} - -//(protected) convert from radix string -function bnpFromRadix(s,b) { -this.fromInt(0); -if(b == null) b = 10; -var cs = this.chunkSize(b); -var d = Math.pow(b,cs), mi = false, j = 0, w = 0; -for(var i = 0; i < s.length; ++i) { - var x = intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-" && this.signum() == 0) mi = true; - continue; - } - w = b*w+x; - if(++j >= cs) { - this.dMultiply(d); - this.dAddOffset(w,0); - j = 0; - w = 0; - } -} -if(j > 0) { - this.dMultiply(Math.pow(b,j)); - this.dAddOffset(w,0); -} -if(mi) BigInteger.ZERO.subTo(this,this); -} - -//(protected) alternate constructor -function bnpFromNumber(a,b,c) { -if("number" == typeof b) { - // new BigInteger(int,int,RNG) - if(a < 2) this.fromInt(1); - else { - this.fromNumber(a,c); - if(!this.testBit(a-1)) // force MSB set - this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); - if(this.isEven()) this.dAddOffset(1,0); // force odd - while(!this.isProbablePrime(b)) { - this.dAddOffset(2,0); - if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); - } - } -} else { - // new BigInteger(int,RNG) - var x = new Array(), t = a&7; - x.length = (a>>3)+1; - b.nextBytes(x); - if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; - this.fromString(x,256); -} -} - -//(public) convert to bigendian byte array -function bnToByteArray() { -var i = this.t, r = new Array(); -r[0] = this.s; -var p = this.DB-(i*this.DB)%8, d, k = 0; -if(i-- > 0) { - if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p) - r[k++] = d|(this.s<<(this.DB-p)); - while(i >= 0) { - if(p < 8) { - d = (this.data[i]&((1<<p)-1))<<(8-p); - d |= this.data[--i]>>(p+=this.DB-8); - } else { - d = (this.data[i]>>(p-=8))&0xff; - if(p <= 0) { p += this.DB; --i; } - } - if((d&0x80) != 0) d |= -256; - if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; - if(k > 0 || d != this.s) r[k++] = d; - } -} -return r; -} - -function bnEquals(a) { return(this.compareTo(a)==0); } -function bnMin(a) { return(this.compareTo(a)<0)?this:a; } -function bnMax(a) { return(this.compareTo(a)>0)?this:a; } - -//(protected) r = this op a (bitwise) -function bnpBitwiseTo(a,op,r) { -var i, f, m = Math.min(a.t,this.t); -for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]); -if(a.t < this.t) { - f = a.s&this.DM; - for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f); - r.t = this.t; -} else { - f = this.s&this.DM; - for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]); - r.t = a.t; -} -r.s = op(this.s,a.s); -r.clamp(); -} - -//(public) this & a -function op_and(x,y) { return x&y; } -function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } - -//(public) this | a -function op_or(x,y) { return x|y; } -function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } - -//(public) this ^ a -function op_xor(x,y) { return x^y; } -function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } - -//(public) this & ~a -function op_andnot(x,y) { return x&~y; } -function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } - -//(public) ~this -function bnNot() { -var r = nbi(); -for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i]; -r.t = this.t; -r.s = ~this.s; -return r; -} - -//(public) this << n -function bnShiftLeft(n) { -var r = nbi(); -if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); -return r; -} - -//(public) this >> n -function bnShiftRight(n) { -var r = nbi(); -if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); -return r; -} - -//return index of lowest 1-bit in x, x < 2^31 -function lbit(x) { -if(x == 0) return -1; -var r = 0; -if((x&0xffff) == 0) { x >>= 16; r += 16; } -if((x&0xff) == 0) { x >>= 8; r += 8; } -if((x&0xf) == 0) { x >>= 4; r += 4; } -if((x&3) == 0) { x >>= 2; r += 2; } -if((x&1) == 0) ++r; -return r; -} - -//(public) returns index of lowest 1-bit (or -1 if none) -function bnGetLowestSetBit() { -for(var i = 0; i < this.t; ++i) - if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]); -if(this.s < 0) return this.t*this.DB; -return -1; -} - -//return number of 1 bits in x -function cbit(x) { -var r = 0; -while(x != 0) { x &= x-1; ++r; } -return r; -} - -//(public) return number of set bits -function bnBitCount() { -var r = 0, x = this.s&this.DM; -for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x); -return r; -} - -//(public) true iff nth bit is set -function bnTestBit(n) { -var j = Math.floor(n/this.DB); -if(j >= this.t) return(this.s!=0); -return((this.data[j]&(1<<(n%this.DB)))!=0); -} - -//(protected) this op (1<<n) -function bnpChangeBit(n,op) { -var r = BigInteger.ONE.shiftLeft(n); -this.bitwiseTo(r,op,r); -return r; -} - -//(public) this | (1<<n) -function bnSetBit(n) { return this.changeBit(n,op_or); } - -//(public) this & ~(1<<n) -function bnClearBit(n) { return this.changeBit(n,op_andnot); } - -//(public) this ^ (1<<n) -function bnFlipBit(n) { return this.changeBit(n,op_xor); } - -//(protected) r = this + a -function bnpAddTo(a,r) { -var i = 0, c = 0, m = Math.min(a.t,this.t); -while(i < m) { - c += this.data[i]+a.data[i]; - r.data[i++] = c&this.DM; - c >>= this.DB; -} -if(a.t < this.t) { - c += a.s; - while(i < this.t) { - c += this.data[i]; - r.data[i++] = c&this.DM; - c >>= this.DB; - } - c += this.s; -} else { - c += this.s; - while(i < a.t) { - c += a.data[i]; - r.data[i++] = c&this.DM; - c >>= this.DB; - } - c += a.s; -} -r.s = (c<0)?-1:0; -if(c > 0) r.data[i++] = c; -else if(c < -1) r.data[i++] = this.DV+c; -r.t = i; -r.clamp(); -} - -//(public) this + a -function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } - -//(public) this - a -function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } - -//(public) this * a -function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } - -//(public) this / a -function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } - -//(public) this % a -function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } - -//(public) [this/a,this%a] -function bnDivideAndRemainder(a) { -var q = nbi(), r = nbi(); -this.divRemTo(a,q,r); -return new Array(q,r); -} - -//(protected) this *= n, this >= 0, 1 < n < DV -function bnpDMultiply(n) { -this.data[this.t] = this.am(0,n-1,this,0,0,this.t); -++this.t; -this.clamp(); -} - -//(protected) this += n << w words, this >= 0 -function bnpDAddOffset(n,w) { -if(n == 0) return; -while(this.t <= w) this.data[this.t++] = 0; -this.data[w] += n; -while(this.data[w] >= this.DV) { - this.data[w] -= this.DV; - if(++w >= this.t) this.data[this.t++] = 0; - ++this.data[w]; -} -} - -//A "null" reducer -function NullExp() {} -function nNop(x) { return x; } -function nMulTo(x,y,r) { x.multiplyTo(y,r); } -function nSqrTo(x,r) { x.squareTo(r); } - -NullExp.prototype.convert = nNop; -NullExp.prototype.revert = nNop; -NullExp.prototype.mulTo = nMulTo; -NullExp.prototype.sqrTo = nSqrTo; - -//(public) this^e -function bnPow(e) { return this.exp(e,new NullExp()); } - -//(protected) r = lower n words of "this * a", a.t <= n -//"this" should be the larger one if appropriate. -function bnpMultiplyLowerTo(a,n,r) { -var i = Math.min(this.t+a.t,n); -r.s = 0; // assumes a,this >= 0 -r.t = i; -while(i > 0) r.data[--i] = 0; -var j; -for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t); -for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i); -r.clamp(); -} - -//(protected) r = "this * a" without lower n words, n > 0 -//"this" should be the larger one if appropriate. -function bnpMultiplyUpperTo(a,n,r) { ---n; -var i = r.t = this.t+a.t-n; -r.s = 0; // assumes a,this >= 0 -while(--i >= 0) r.data[i] = 0; -for(i = Math.max(n-this.t,0); i < a.t; ++i) - r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n); -r.clamp(); -r.drShiftTo(1,r); -} - -//Barrett modular reduction -function Barrett(m) { -// setup Barrett -this.r2 = nbi(); -this.q3 = nbi(); -BigInteger.ONE.dlShiftTo(2*m.t,this.r2); -this.mu = this.r2.divide(m); -this.m = m; -} - -function barrettConvert(x) { -if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); -else if(x.compareTo(this.m) < 0) return x; -else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } -} - -function barrettRevert(x) { return x; } - -//x = x mod m (HAC 14.42) -function barrettReduce(x) { -x.drShiftTo(this.m.t-1,this.r2); -if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } -this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); -this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); -while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); -x.subTo(this.r2,x); -while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); -} - -//r = x^2 mod m; x != r -function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - -//r = x*y mod m; x,y != r -function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - -Barrett.prototype.convert = barrettConvert; -Barrett.prototype.revert = barrettRevert; -Barrett.prototype.reduce = barrettReduce; -Barrett.prototype.mulTo = barrettMulTo; -Barrett.prototype.sqrTo = barrettSqrTo; - -//(public) this^e % m (HAC 14.85) -function bnModPow(e,m) { -var i = e.bitLength(), k, r = nbv(1), z; -if(i <= 0) return r; -else if(i < 18) k = 1; -else if(i < 48) k = 3; -else if(i < 144) k = 4; -else if(i < 768) k = 5; -else k = 6; -if(i < 8) - z = new Classic(m); -else if(m.isEven()) - z = new Barrett(m); -else - z = new Montgomery(m); - -// precomputation -var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; -g[1] = z.convert(this); -if(k > 1) { - var g2 = nbi(); - z.sqrTo(g[1],g2); - while(n <= km) { - g[n] = nbi(); - z.mulTo(g2,g[n-2],g[n]); - n += 2; - } -} - -var j = e.t-1, w, is1 = true, r2 = nbi(), t; -i = nbits(e.data[j])-1; -while(j >= 0) { - if(i >= k1) w = (e.data[j]>>(i-k1))&km; - else { - w = (e.data[j]&((1<<(i+1))-1))<<(k1-i); - if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1); - } - - n = k; - while((w&1) == 0) { w >>= 1; --n; } - if((i -= n) < 0) { i += this.DB; --j; } - if(is1) { // ret == 1, don't bother squaring or multiplying it - g[w].copyTo(r); - is1 = false; - } else { - while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } - if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } - z.mulTo(r2,g[w],r); - } - - while(j >= 0 && (e.data[j]&(1<<i)) == 0) { - z.sqrTo(r,r2); t = r; r = r2; r2 = t; - if(--i < 0) { i = this.DB-1; --j; } - } -} -return z.revert(r); -} - -//(public) gcd(this,a) (HAC 14.54) -function bnGCD(a) { -var x = (this.s<0)?this.negate():this.clone(); -var y = (a.s<0)?a.negate():a.clone(); -if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } -var i = x.getLowestSetBit(), g = y.getLowestSetBit(); -if(g < 0) return x; -if(i < g) g = i; -if(g > 0) { - x.rShiftTo(g,x); - y.rShiftTo(g,y); -} -while(x.signum() > 0) { - if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); - if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); - if(x.compareTo(y) >= 0) { - x.subTo(y,x); - x.rShiftTo(1,x); - } else { - y.subTo(x,y); - y.rShiftTo(1,y); - } -} -if(g > 0) y.lShiftTo(g,y); -return y; -} - -//(protected) this % n, n < 2^26 -function bnpModInt(n) { -if(n <= 0) return 0; -var d = this.DV%n, r = (this.s<0)?n-1:0; -if(this.t > 0) - if(d == 0) r = this.data[0]%n; - else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n; -return r; -} - -//(public) 1/this % m (HAC 14.61) -function bnModInverse(m) { -var ac = m.isEven(); -if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; -var u = m.clone(), v = this.clone(); -var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); -while(u.signum() != 0) { - while(u.isEven()) { - u.rShiftTo(1,u); - if(ac) { - if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } - a.rShiftTo(1,a); - } else if(!b.isEven()) b.subTo(m,b); - b.rShiftTo(1,b); - } - while(v.isEven()) { - v.rShiftTo(1,v); - if(ac) { - if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } - c.rShiftTo(1,c); - } else if(!d.isEven()) d.subTo(m,d); - d.rShiftTo(1,d); - } - if(u.compareTo(v) >= 0) { - u.subTo(v,u); - if(ac) a.subTo(c,a); - b.subTo(d,b); - } else { - v.subTo(u,v); - if(ac) c.subTo(a,c); - d.subTo(b,d); - } -} -if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; -if(d.compareTo(m) >= 0) return d.subtract(m); -if(d.signum() < 0) d.addTo(m,d); else return d; -if(d.signum() < 0) return d.add(m); else return d; -} - -var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; -var lplim = (1<<26)/lowprimes[lowprimes.length-1]; - -//(public) test primality with certainty >= 1-.5^t -function bnIsProbablePrime(t) { -var i, x = this.abs(); -if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) { - for(i = 0; i < lowprimes.length; ++i) - if(x.data[0] == lowprimes[i]) return true; - return false; -} -if(x.isEven()) return false; -i = 1; -while(i < lowprimes.length) { - var m = lowprimes[i], j = i+1; - while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; - m = x.modInt(m); - while(i < j) if(m%lowprimes[i++] == 0) return false; -} -return x.millerRabin(t); -} - -//(protected) true if probably prime (HAC 4.24, Miller-Rabin) -function bnpMillerRabin(t) { -var n1 = this.subtract(BigInteger.ONE); -var k = n1.getLowestSetBit(); -if(k <= 0) return false; -var r = n1.shiftRight(k); -var prng = bnGetPrng(); -var a; -for(var i = 0; i < t; ++i) { - // select witness 'a' at random from between 1 and n1 - do { - a = new BigInteger(this.bitLength(), prng); - } - while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); - var y = a.modPow(r,this); - if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { - var j = 1; - while(j++ < k && y.compareTo(n1) != 0) { - y = y.modPowInt(2,this); - if(y.compareTo(BigInteger.ONE) == 0) return false; - } - if(y.compareTo(n1) != 0) return false; - } -} -return true; -} - -// get pseudo random number generator -function bnGetPrng() { - // create prng with api that matches BigInteger secure random - return { - // x is an array to fill with bytes - nextBytes: function(x) { - for(var i = 0; i < x.length; ++i) { - x[i] = Math.floor(Math.random() * 0x0100); - } - } - }; -} - -//protected -BigInteger.prototype.chunkSize = bnpChunkSize; -BigInteger.prototype.toRadix = bnpToRadix; -BigInteger.prototype.fromRadix = bnpFromRadix; -BigInteger.prototype.fromNumber = bnpFromNumber; -BigInteger.prototype.bitwiseTo = bnpBitwiseTo; -BigInteger.prototype.changeBit = bnpChangeBit; -BigInteger.prototype.addTo = bnpAddTo; -BigInteger.prototype.dMultiply = bnpDMultiply; -BigInteger.prototype.dAddOffset = bnpDAddOffset; -BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; -BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; -BigInteger.prototype.modInt = bnpModInt; -BigInteger.prototype.millerRabin = bnpMillerRabin; - -//public -BigInteger.prototype.clone = bnClone; -BigInteger.prototype.intValue = bnIntValue; -BigInteger.prototype.byteValue = bnByteValue; -BigInteger.prototype.shortValue = bnShortValue; -BigInteger.prototype.signum = bnSigNum; -BigInteger.prototype.toByteArray = bnToByteArray; -BigInteger.prototype.equals = bnEquals; -BigInteger.prototype.min = bnMin; -BigInteger.prototype.max = bnMax; -BigInteger.prototype.and = bnAnd; -BigInteger.prototype.or = bnOr; -BigInteger.prototype.xor = bnXor; -BigInteger.prototype.andNot = bnAndNot; -BigInteger.prototype.not = bnNot; -BigInteger.prototype.shiftLeft = bnShiftLeft; -BigInteger.prototype.shiftRight = bnShiftRight; -BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; -BigInteger.prototype.bitCount = bnBitCount; -BigInteger.prototype.testBit = bnTestBit; -BigInteger.prototype.setBit = bnSetBit; -BigInteger.prototype.clearBit = bnClearBit; -BigInteger.prototype.flipBit = bnFlipBit; -BigInteger.prototype.add = bnAdd; -BigInteger.prototype.subtract = bnSubtract; -BigInteger.prototype.multiply = bnMultiply; -BigInteger.prototype.divide = bnDivide; -BigInteger.prototype.remainder = bnRemainder; -BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; -BigInteger.prototype.modPow = bnModPow; -BigInteger.prototype.modInverse = bnModInverse; -BigInteger.prototype.pow = bnPow; -BigInteger.prototype.gcd = bnGCD; -BigInteger.prototype.isProbablePrime = bnIsProbablePrime; - -//BigInteger interfaces not implemented in jsbn: - -//BigInteger(int signum, byte[] magnitude) -//double doubleValue() -//float floatValue() -//int hashCode() -//long longValue() -//static BigInteger valueOf(long val) - -forge.jsbn = forge.jsbn || {}; -forge.jsbn.BigInteger = BigInteger; - -} // end module implementation - -/* ########## Begin module wrapper ########## */ -var name = 'jsbn'; -if(typeof define !== 'function') { - // NodeJS -> AMD - if(typeof module === 'object' && module.exports) { - var nodeJS = true; - define = function(ids, factory) { - factory(require, module); - }; - } else { - // <script> - if(typeof forge === 'undefined') { - forge = {}; - } - return initModule(forge); - } -} -// AMD -var deps; -var defineFunc = function(require, module) { - module.exports = function(forge) { - var mods = deps.map(function(dep) { - return require(dep); - }).concat(initModule); - // handle circular dependencies - forge = forge || {}; - forge.defined = forge.defined || {}; - if(forge.defined[name]) { - return forge[name]; - } - forge.defined[name] = true; - for(var i = 0; i < mods.length; ++i) { - mods[i](forge); - } - return forge[name]; - }; -}; -var tmpDefine = define; -define = function(ids, factory) { - deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2); - if(nodeJS) { - delete define; - return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0)); - } - define = tmpDefine; - return define.apply(null, Array.prototype.slice.call(arguments, 0)); -}; -define(['require', 'module'], function() { - defineFunc.apply(null, Array.prototype.slice.call(arguments, 0)); -}); -})(); |