diff options
author | Minteck <contact@minteck.org> | 2023-01-10 14:54:04 +0100 |
---|---|---|
committer | Minteck <contact@minteck.org> | 2023-01-10 14:54:04 +0100 |
commit | 99c1d9af689e5325f3cf535c4007b3aeb8325229 (patch) | |
tree | e663b3c2ebdbd67c818ac0c5147f0ce1d2463cda /school/node_modules/node-forge/js/prime.worker.js | |
parent | 9871b03912fc28ad38b4037ebf26a78aa937baba (diff) | |
download | pluralconnect-99c1d9af689e5325f3cf535c4007b3aeb8325229.tar.gz pluralconnect-99c1d9af689e5325f3cf535c4007b3aeb8325229.tar.bz2 pluralconnect-99c1d9af689e5325f3cf535c4007b3aeb8325229.zip |
Update - This is an automated commit
Diffstat (limited to 'school/node_modules/node-forge/js/prime.worker.js')
-rw-r--r-- | school/node_modules/node-forge/js/prime.worker.js | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/school/node_modules/node-forge/js/prime.worker.js b/school/node_modules/node-forge/js/prime.worker.js new file mode 100644 index 0000000..5fdaa7f --- /dev/null +++ b/school/node_modules/node-forge/js/prime.worker.js @@ -0,0 +1,165 @@ +/** + * RSA Key Generation Worker. + * + * @author Dave Longley + * + * Copyright (c) 2013 Digital Bazaar, Inc. + */ +importScripts('jsbn.js'); + +// prime constants +var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; +var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1]; + +var BigInteger = forge.jsbn.BigInteger; +var BIG_TWO = new BigInteger(null); +BIG_TWO.fromInt(2); + +self.addEventListener('message', function(e) { + var result = findPrime(e.data); + self.postMessage(result); +}); + +// start receiving ranges to check +self.postMessage({found: false}); + +// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29 +var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; + +function findPrime(data) { + // TODO: abstract based on data.algorithm (PRIMEINC vs. others) + + // create BigInteger from given random bytes + var num = new BigInteger(data.hex, 16); + + /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The + number we are given is always aligned at 30k + 1. Each time the number is + determined not to be prime we add to get to the next 'i', eg: if the number + was at 30k + 1 we add 6. */ + var deltaIdx = 0; + + // find nearest prime + var workLoad = data.workLoad; + for(var i = 0; i < workLoad; ++i) { + // do primality test + if(isProbablePrime(num)) { + return {found: true, prime: num.toString(16)}; + } + // get next potential prime + num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); + } + + return {found: false}; +} + +function isProbablePrime(n) { + // divide by low primes, ignore even checks, etc (n alread aligned properly) + var i = 1; + while(i < LOW_PRIMES.length) { + var m = LOW_PRIMES[i]; + var j = i + 1; + while(j < LOW_PRIMES.length && m < LP_LIMIT) { + m *= LOW_PRIMES[j++]; + } + m = n.modInt(m); + while(i < j) { + if(m % LOW_PRIMES[i++] === 0) { + return false; + } + } + } + return runMillerRabin(n); +} + +// HAC 4.24, Miller-Rabin +function runMillerRabin(n) { + // n1 = n - 1 + var n1 = n.subtract(BigInteger.ONE); + + // get s and d such that n1 = 2^s * d + var s = n1.getLowestSetBit(); + if(s <= 0) { + return false; + } + var d = n1.shiftRight(s); + + var k = _getMillerRabinTests(n.bitLength()); + var prng = getPrng(); + var a; + for(var i = 0; i < k; ++i) { + // select witness 'a' at random from between 1 and n - 1 + do { + a = new BigInteger(n.bitLength(), prng); + } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); + + /* See if 'a' is a composite witness. */ + + // x = a^d mod n + var x = a.modPow(d, n); + + // probably prime + if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) { + continue; + } + + var j = s; + while(--j) { + // x = x^2 mod a + x = x.modPowInt(2, n); + + // 'n' is composite because no previous x == -1 mod n + if(x.compareTo(BigInteger.ONE) === 0) { + return false; + } + // x == -1 mod n, so probably prime + if(x.compareTo(n1) === 0) { + break; + } + } + + // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime + if(j === 0) { + return false; + } + } + + return true; +} + +// get pseudo random number generator +function getPrng() { + // create prng with api that matches BigInteger secure random + return { + // x is an array to fill with bytes + nextBytes: function(x) { + for(var i = 0; i < x.length; ++i) { + x[i] = Math.floor(Math.random() * 0xFF); + } + } + }; +} + +/** + * Returns the required number of Miller-Rabin tests to generate a + * prime with an error probability of (1/2)^80. + * + * See Handbook of Applied Cryptography Chapter 4, Table 4.4. + * + * @param bits the bit size. + * + * @return the required number of iterations. + */ +function _getMillerRabinTests(bits) { + if(bits <= 100) return 27; + if(bits <= 150) return 18; + if(bits <= 200) return 15; + if(bits <= 250) return 12; + if(bits <= 300) return 9; + if(bits <= 350) return 8; + if(bits <= 400) return 7; + if(bits <= 500) return 6; + if(bits <= 600) return 5; + if(bits <= 800) return 4; + if(bits <= 1250) return 3; + return 2; +} |