diff options
author | Minteck <contact@minteck.org> | 2023-02-23 19:34:56 +0100 |
---|---|---|
committer | Minteck <contact@minteck.org> | 2023-02-23 19:34:56 +0100 |
commit | 3d1cd02f27518f1a04374c7c8320cd5d82ede6e9 (patch) | |
tree | 75be5fba4368472fb11c8015aee026b2b9a71888 /school/node_modules/node-forge/js/prime.worker.js | |
parent | 8cc1f13c17fa2fb5a4410542d39e650e02945634 (diff) | |
download | pluralconnect-3d1cd02f27518f1a04374c7c8320cd5d82ede6e9.tar.gz pluralconnect-3d1cd02f27518f1a04374c7c8320cd5d82ede6e9.tar.bz2 pluralconnect-3d1cd02f27518f1a04374c7c8320cd5d82ede6e9.zip |
Updated 40 files, added 37 files, deleted 1103 files and renamed 3905 files (automated)
Diffstat (limited to 'school/node_modules/node-forge/js/prime.worker.js')
-rw-r--r-- | school/node_modules/node-forge/js/prime.worker.js | 165 |
1 files changed, 0 insertions, 165 deletions
diff --git a/school/node_modules/node-forge/js/prime.worker.js b/school/node_modules/node-forge/js/prime.worker.js deleted file mode 100644 index 5fdaa7f..0000000 --- a/school/node_modules/node-forge/js/prime.worker.js +++ /dev/null @@ -1,165 +0,0 @@ -/** - * RSA Key Generation Worker. - * - * @author Dave Longley - * - * Copyright (c) 2013 Digital Bazaar, Inc. - */ -importScripts('jsbn.js'); - -// prime constants -var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; -var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1]; - -var BigInteger = forge.jsbn.BigInteger; -var BIG_TWO = new BigInteger(null); -BIG_TWO.fromInt(2); - -self.addEventListener('message', function(e) { - var result = findPrime(e.data); - self.postMessage(result); -}); - -// start receiving ranges to check -self.postMessage({found: false}); - -// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29 -var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2]; - -function findPrime(data) { - // TODO: abstract based on data.algorithm (PRIMEINC vs. others) - - // create BigInteger from given random bytes - var num = new BigInteger(data.hex, 16); - - /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The - number we are given is always aligned at 30k + 1. Each time the number is - determined not to be prime we add to get to the next 'i', eg: if the number - was at 30k + 1 we add 6. */ - var deltaIdx = 0; - - // find nearest prime - var workLoad = data.workLoad; - for(var i = 0; i < workLoad; ++i) { - // do primality test - if(isProbablePrime(num)) { - return {found: true, prime: num.toString(16)}; - } - // get next potential prime - num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0); - } - - return {found: false}; -} - -function isProbablePrime(n) { - // divide by low primes, ignore even checks, etc (n alread aligned properly) - var i = 1; - while(i < LOW_PRIMES.length) { - var m = LOW_PRIMES[i]; - var j = i + 1; - while(j < LOW_PRIMES.length && m < LP_LIMIT) { - m *= LOW_PRIMES[j++]; - } - m = n.modInt(m); - while(i < j) { - if(m % LOW_PRIMES[i++] === 0) { - return false; - } - } - } - return runMillerRabin(n); -} - -// HAC 4.24, Miller-Rabin -function runMillerRabin(n) { - // n1 = n - 1 - var n1 = n.subtract(BigInteger.ONE); - - // get s and d such that n1 = 2^s * d - var s = n1.getLowestSetBit(); - if(s <= 0) { - return false; - } - var d = n1.shiftRight(s); - - var k = _getMillerRabinTests(n.bitLength()); - var prng = getPrng(); - var a; - for(var i = 0; i < k; ++i) { - // select witness 'a' at random from between 1 and n - 1 - do { - a = new BigInteger(n.bitLength(), prng); - } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); - - /* See if 'a' is a composite witness. */ - - // x = a^d mod n - var x = a.modPow(d, n); - - // probably prime - if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) { - continue; - } - - var j = s; - while(--j) { - // x = x^2 mod a - x = x.modPowInt(2, n); - - // 'n' is composite because no previous x == -1 mod n - if(x.compareTo(BigInteger.ONE) === 0) { - return false; - } - // x == -1 mod n, so probably prime - if(x.compareTo(n1) === 0) { - break; - } - } - - // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime - if(j === 0) { - return false; - } - } - - return true; -} - -// get pseudo random number generator -function getPrng() { - // create prng with api that matches BigInteger secure random - return { - // x is an array to fill with bytes - nextBytes: function(x) { - for(var i = 0; i < x.length; ++i) { - x[i] = Math.floor(Math.random() * 0xFF); - } - } - }; -} - -/** - * Returns the required number of Miller-Rabin tests to generate a - * prime with an error probability of (1/2)^80. - * - * See Handbook of Applied Cryptography Chapter 4, Table 4.4. - * - * @param bits the bit size. - * - * @return the required number of iterations. - */ -function _getMillerRabinTests(bits) { - if(bits <= 100) return 27; - if(bits <= 150) return 18; - if(bits <= 200) return 15; - if(bits <= 250) return 12; - if(bits <= 300) return 9; - if(bits <= 350) return 8; - if(bits <= 400) return 7; - if(bits <= 500) return 6; - if(bits <= 600) return 5; - if(bits <= 800) return 4; - if(bits <= 1250) return 3; - return 2; -} |