diff options
author | Minteck <contact@minteck.org> | 2023-01-10 14:54:04 +0100 |
---|---|---|
committer | Minteck <contact@minteck.org> | 2023-01-10 14:54:04 +0100 |
commit | 99c1d9af689e5325f3cf535c4007b3aeb8325229 (patch) | |
tree | e663b3c2ebdbd67c818ac0c5147f0ce1d2463cda /school/node_modules/node-forge/js/jsbn.js | |
parent | 9871b03912fc28ad38b4037ebf26a78aa937baba (diff) | |
download | pluralconnect-99c1d9af689e5325f3cf535c4007b3aeb8325229.tar.gz pluralconnect-99c1d9af689e5325f3cf535c4007b3aeb8325229.tar.bz2 pluralconnect-99c1d9af689e5325f3cf535c4007b3aeb8325229.zip |
Update - This is an automated commit
Diffstat (limited to 'school/node_modules/node-forge/js/jsbn.js')
-rw-r--r-- | school/node_modules/node-forge/js/jsbn.js | 1321 |
1 files changed, 1321 insertions, 0 deletions
diff --git a/school/node_modules/node-forge/js/jsbn.js b/school/node_modules/node-forge/js/jsbn.js new file mode 100644 index 0000000..6510139 --- /dev/null +++ b/school/node_modules/node-forge/js/jsbn.js @@ -0,0 +1,1321 @@ +// Copyright (c) 2005 Tom Wu +// All Rights Reserved. +// See "LICENSE" for details. + +// Basic JavaScript BN library - subset useful for RSA encryption. + +/* +Licensing (LICENSE) +------------------- + +This software is covered under the following copyright: +*/ +/* + * Copyright (c) 2003-2005 Tom Wu + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, + * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY + * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + * + * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, + * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER + * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF + * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT + * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + * In addition, the following condition applies: + * + * All redistributions must retain an intact copy of this copyright notice + * and disclaimer. + */ +/* +Address all questions regarding this license to: + + Tom Wu + tjw@cs.Stanford.EDU +*/ + +(function() { +/* ########## Begin module implementation ########## */ +function initModule(forge) { + +// Bits per digit +var dbits; + +// JavaScript engine analysis +var canary = 0xdeadbeefcafe; +var j_lm = ((canary&0xffffff)==0xefcafe); + +// (public) Constructor +function BigInteger(a,b,c) { + this.data = []; + if(a != null) + if("number" == typeof a) this.fromNumber(a,b,c); + else if(b == null && "string" != typeof a) this.fromString(a,256); + else this.fromString(a,b); +} + +// return new, unset BigInteger +function nbi() { return new BigInteger(null); } + +// am: Compute w_j += (x*this_i), propagate carries, +// c is initial carry, returns final carry. +// c < 3*dvalue, x < 2*dvalue, this_i < dvalue +// We need to select the fastest one that works in this environment. + +// am1: use a single mult and divide to get the high bits, +// max digit bits should be 26 because +// max internal value = 2*dvalue^2-2*dvalue (< 2^53) +function am1(i,x,w,j,c,n) { + while(--n >= 0) { + var v = x*this.data[i++]+w.data[j]+c; + c = Math.floor(v/0x4000000); + w.data[j++] = v&0x3ffffff; + } + return c; +} +// am2 avoids a big mult-and-extract completely. +// Max digit bits should be <= 30 because we do bitwise ops +// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) +function am2(i,x,w,j,c,n) { + var xl = x&0x7fff, xh = x>>15; + while(--n >= 0) { + var l = this.data[i]&0x7fff; + var h = this.data[i++]>>15; + var m = xh*l+h*xl; + l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff); + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); + w.data[j++] = l&0x3fffffff; + } + return c; +} +// Alternately, set max digit bits to 28 since some +// browsers slow down when dealing with 32-bit numbers. +function am3(i,x,w,j,c,n) { + var xl = x&0x3fff, xh = x>>14; + while(--n >= 0) { + var l = this.data[i]&0x3fff; + var h = this.data[i++]>>14; + var m = xh*l+h*xl; + l = xl*l+((m&0x3fff)<<14)+w.data[j]+c; + c = (l>>28)+(m>>14)+xh*h; + w.data[j++] = l&0xfffffff; + } + return c; +} + +// node.js (no browser) +if(typeof(navigator) === 'undefined') +{ + BigInteger.prototype.am = am3; + dbits = 28; +} else if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { + BigInteger.prototype.am = am2; + dbits = 30; +} else if(j_lm && (navigator.appName != "Netscape")) { + BigInteger.prototype.am = am1; + dbits = 26; +} else { // Mozilla/Netscape seems to prefer am3 + BigInteger.prototype.am = am3; + dbits = 28; +} + +BigInteger.prototype.DB = dbits; +BigInteger.prototype.DM = ((1<<dbits)-1); +BigInteger.prototype.DV = (1<<dbits); + +var BI_FP = 52; +BigInteger.prototype.FV = Math.pow(2,BI_FP); +BigInteger.prototype.F1 = BI_FP-dbits; +BigInteger.prototype.F2 = 2*dbits-BI_FP; + +// Digit conversions +var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; +var BI_RC = new Array(); +var rr,vv; +rr = "0".charCodeAt(0); +for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; +rr = "a".charCodeAt(0); +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; +rr = "A".charCodeAt(0); +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; + +function int2char(n) { return BI_RM.charAt(n); } +function intAt(s,i) { + var c = BI_RC[s.charCodeAt(i)]; + return (c==null)?-1:c; +} + +// (protected) copy this to r +function bnpCopyTo(r) { + for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i]; + r.t = this.t; + r.s = this.s; +} + +// (protected) set from integer value x, -DV <= x < DV +function bnpFromInt(x) { + this.t = 1; + this.s = (x<0)?-1:0; + if(x > 0) this.data[0] = x; + else if(x < -1) this.data[0] = x+this.DV; + else this.t = 0; +} + +// return bigint initialized to value +function nbv(i) { var r = nbi(); r.fromInt(i); return r; } + +// (protected) set from string and radix +function bnpFromString(s,b) { + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 256) k = 8; // byte array + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else { this.fromRadix(s,b); return; } + this.t = 0; + this.s = 0; + var i = s.length, mi = false, sh = 0; + while(--i >= 0) { + var x = (k==8)?s[i]&0xff:intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-") mi = true; + continue; + } + mi = false; + if(sh == 0) + this.data[this.t++] = x; + else if(sh+k > this.DB) { + this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; + this.data[this.t++] = (x>>(this.DB-sh)); + } else + this.data[this.t-1] |= x<<sh; + sh += k; + if(sh >= this.DB) sh -= this.DB; + } + if(k == 8 && (s[0]&0x80) != 0) { + this.s = -1; + if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; + } + this.clamp(); + if(mi) BigInteger.ZERO.subTo(this,this); +} + +// (protected) clamp off excess high words +function bnpClamp() { + var c = this.s&this.DM; + while(this.t > 0 && this.data[this.t-1] == c) --this.t; +} + +// (public) return string representation in given radix +function bnToString(b) { + if(this.s < 0) return "-"+this.negate().toString(b); + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else return this.toRadix(b); + var km = (1<<k)-1, d, m = false, r = "", i = this.t; + var p = this.DB-(i*this.DB)%k; + if(i-- > 0) { + if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); } + while(i >= 0) { + if(p < k) { + d = (this.data[i]&((1<<p)-1))<<(k-p); + d |= this.data[--i]>>(p+=this.DB-k); + } else { + d = (this.data[i]>>(p-=k))&km; + if(p <= 0) { p += this.DB; --i; } + } + if(d > 0) m = true; + if(m) r += int2char(d); + } + } + return m?r:"0"; +} + +// (public) -this +function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } + +// (public) |this| +function bnAbs() { return (this.s<0)?this.negate():this; } + +// (public) return + if this > a, - if this < a, 0 if equal +function bnCompareTo(a) { + var r = this.s-a.s; + if(r != 0) return r; + var i = this.t; + r = i-a.t; + if(r != 0) return (this.s<0)?-r:r; + while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r; + return 0; +} + +// returns bit length of the integer x +function nbits(x) { + var r = 1, t; + if((t=x>>>16) != 0) { x = t; r += 16; } + if((t=x>>8) != 0) { x = t; r += 8; } + if((t=x>>4) != 0) { x = t; r += 4; } + if((t=x>>2) != 0) { x = t; r += 2; } + if((t=x>>1) != 0) { x = t; r += 1; } + return r; +} + +// (public) return the number of bits in "this" +function bnBitLength() { + if(this.t <= 0) return 0; + return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM)); +} + +// (protected) r = this << n*DB +function bnpDLShiftTo(n,r) { + var i; + for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i]; + for(i = n-1; i >= 0; --i) r.data[i] = 0; + r.t = this.t+n; + r.s = this.s; +} + +// (protected) r = this >> n*DB +function bnpDRShiftTo(n,r) { + for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i]; + r.t = Math.max(this.t-n,0); + r.s = this.s; +} + +// (protected) r = this << n +function bnpLShiftTo(n,r) { + var bs = n%this.DB; + var cbs = this.DB-bs; + var bm = (1<<cbs)-1; + var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; + for(i = this.t-1; i >= 0; --i) { + r.data[i+ds+1] = (this.data[i]>>cbs)|c; + c = (this.data[i]&bm)<<bs; + } + for(i = ds-1; i >= 0; --i) r.data[i] = 0; + r.data[ds] = c; + r.t = this.t+ds+1; + r.s = this.s; + r.clamp(); +} + +// (protected) r = this >> n +function bnpRShiftTo(n,r) { + r.s = this.s; + var ds = Math.floor(n/this.DB); + if(ds >= this.t) { r.t = 0; return; } + var bs = n%this.DB; + var cbs = this.DB-bs; + var bm = (1<<bs)-1; + r.data[0] = this.data[ds]>>bs; + for(var i = ds+1; i < this.t; ++i) { + r.data[i-ds-1] |= (this.data[i]&bm)<<cbs; + r.data[i-ds] = this.data[i]>>bs; + } + if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs; + r.t = this.t-ds; + r.clamp(); +} + +// (protected) r = this - a +function bnpSubTo(a,r) { + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this.data[i]-a.data[i]; + r.data[i++] = c&this.DM; + c >>= this.DB; + } + if(a.t < this.t) { + c -= a.s; + while(i < this.t) { + c += this.data[i]; + r.data[i++] = c&this.DM; + c >>= this.DB; + } + c += this.s; + } else { + c += this.s; + while(i < a.t) { + c -= a.data[i]; + r.data[i++] = c&this.DM; + c >>= this.DB; + } + c -= a.s; + } + r.s = (c<0)?-1:0; + if(c < -1) r.data[i++] = this.DV+c; + else if(c > 0) r.data[i++] = c; + r.t = i; + r.clamp(); +} + +// (protected) r = this * a, r != this,a (HAC 14.12) +// "this" should be the larger one if appropriate. +function bnpMultiplyTo(a,r) { + var x = this.abs(), y = a.abs(); + var i = x.t; + r.t = i+y.t; + while(--i >= 0) r.data[i] = 0; + for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t); + r.s = 0; + r.clamp(); + if(this.s != a.s) BigInteger.ZERO.subTo(r,r); +} + +// (protected) r = this^2, r != this (HAC 14.16) +function bnpSquareTo(r) { + var x = this.abs(); + var i = r.t = 2*x.t; + while(--i >= 0) r.data[i] = 0; + for(i = 0; i < x.t-1; ++i) { + var c = x.am(i,x.data[i],r,2*i,0,1); + if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { + r.data[i+x.t] -= x.DV; + r.data[i+x.t+1] = 1; + } + } + if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1); + r.s = 0; + r.clamp(); +} + +// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) +// r != q, this != m. q or r may be null. +function bnpDivRemTo(m,q,r) { + var pm = m.abs(); + if(pm.t <= 0) return; + var pt = this.abs(); + if(pt.t < pm.t) { + if(q != null) q.fromInt(0); + if(r != null) this.copyTo(r); + return; + } + if(r == null) r = nbi(); + var y = nbi(), ts = this.s, ms = m.s; + var nsh = this.DB-nbits(pm.data[pm.t-1]); // normalize modulus + if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } + var ys = y.t; + var y0 = y.data[ys-1]; + if(y0 == 0) return; + var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0); + var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; + var i = r.t, j = i-ys, t = (q==null)?nbi():q; + y.dlShiftTo(j,t); + if(r.compareTo(t) >= 0) { + r.data[r.t++] = 1; + r.subTo(t,r); + } + BigInteger.ONE.dlShiftTo(ys,t); + t.subTo(y,y); // "negative" y so we can replace sub with am later + while(y.t < ys) y.data[y.t++] = 0; + while(--j >= 0) { + // Estimate quotient digit + var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2); + if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out + y.dlShiftTo(j,t); + r.subTo(t,r); + while(r.data[i] < --qd) r.subTo(t,r); + } + } + if(q != null) { + r.drShiftTo(ys,q); + if(ts != ms) BigInteger.ZERO.subTo(q,q); + } + r.t = ys; + r.clamp(); + if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder + if(ts < 0) BigInteger.ZERO.subTo(r,r); +} + +// (public) this mod a +function bnMod(a) { + var r = nbi(); + this.abs().divRemTo(a,null,r); + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); + return r; +} + +// Modular reduction using "classic" algorithm +function Classic(m) { this.m = m; } +function cConvert(x) { + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); + else return x; +} +function cRevert(x) { return x; } +function cReduce(x) { x.divRemTo(this.m,null,x); } +function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } +function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +Classic.prototype.convert = cConvert; +Classic.prototype.revert = cRevert; +Classic.prototype.reduce = cReduce; +Classic.prototype.mulTo = cMulTo; +Classic.prototype.sqrTo = cSqrTo; + +// (protected) return "-1/this % 2^DB"; useful for Mont. reduction +// justification: +// xy == 1 (mod m) +// xy = 1+km +// xy(2-xy) = (1+km)(1-km) +// x[y(2-xy)] = 1-k^2m^2 +// x[y(2-xy)] == 1 (mod m^2) +// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 +// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. +// JS multiply "overflows" differently from C/C++, so care is needed here. +function bnpInvDigit() { + if(this.t < 1) return 0; + var x = this.data[0]; + if((x&1) == 0) return 0; + var y = x&3; // y == 1/x mod 2^2 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 + // last step - calculate inverse mod DV directly; + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints + y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits + // we really want the negative inverse, and -DV < y < DV + return (y>0)?this.DV-y:-y; +} + +// Montgomery reduction +function Montgomery(m) { + this.m = m; + this.mp = m.invDigit(); + this.mpl = this.mp&0x7fff; + this.mph = this.mp>>15; + this.um = (1<<(m.DB-15))-1; + this.mt2 = 2*m.t; +} + +// xR mod m +function montConvert(x) { + var r = nbi(); + x.abs().dlShiftTo(this.m.t,r); + r.divRemTo(this.m,null,r); + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); + return r; +} + +// x/R mod m +function montRevert(x) { + var r = nbi(); + x.copyTo(r); + this.reduce(r); + return r; +} + +// x = x/R mod m (HAC 14.32) +function montReduce(x) { + while(x.t <= this.mt2) // pad x so am has enough room later + x.data[x.t++] = 0; + for(var i = 0; i < this.m.t; ++i) { + // faster way of calculating u0 = x.data[i]*mp mod DV + var j = x.data[i]&0x7fff; + var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM; + // use am to combine the multiply-shift-add into one call + j = i+this.m.t; + x.data[j] += this.m.am(0,u0,x,i,0,this.m.t); + // propagate carry + while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; } + } + x.clamp(); + x.drShiftTo(this.m.t,x); + if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +// r = "x^2/R mod m"; x != r +function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +// r = "xy/R mod m"; x,y != r +function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Montgomery.prototype.convert = montConvert; +Montgomery.prototype.revert = montRevert; +Montgomery.prototype.reduce = montReduce; +Montgomery.prototype.mulTo = montMulTo; +Montgomery.prototype.sqrTo = montSqrTo; + +// (protected) true iff this is even +function bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; } + +// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) +function bnpExp(e,z) { + if(e > 0xffffffff || e < 1) return BigInteger.ONE; + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; + g.copyTo(r); + while(--i >= 0) { + z.sqrTo(r,r2); + if((e&(1<<i)) > 0) z.mulTo(r2,g,r); + else { var t = r; r = r2; r2 = t; } + } + return z.revert(r); +} + +// (public) this^e % m, 0 <= e < 2^32 +function bnModPowInt(e,m) { + var z; + if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); + return this.exp(e,z); +} + +// protected +BigInteger.prototype.copyTo = bnpCopyTo; +BigInteger.prototype.fromInt = bnpFromInt; +BigInteger.prototype.fromString = bnpFromString; +BigInteger.prototype.clamp = bnpClamp; +BigInteger.prototype.dlShiftTo = bnpDLShiftTo; +BigInteger.prototype.drShiftTo = bnpDRShiftTo; +BigInteger.prototype.lShiftTo = bnpLShiftTo; +BigInteger.prototype.rShiftTo = bnpRShiftTo; +BigInteger.prototype.subTo = bnpSubTo; +BigInteger.prototype.multiplyTo = bnpMultiplyTo; +BigInteger.prototype.squareTo = bnpSquareTo; +BigInteger.prototype.divRemTo = bnpDivRemTo; +BigInteger.prototype.invDigit = bnpInvDigit; +BigInteger.prototype.isEven = bnpIsEven; +BigInteger.prototype.exp = bnpExp; + +// public +BigInteger.prototype.toString = bnToString; +BigInteger.prototype.negate = bnNegate; +BigInteger.prototype.abs = bnAbs; +BigInteger.prototype.compareTo = bnCompareTo; +BigInteger.prototype.bitLength = bnBitLength; +BigInteger.prototype.mod = bnMod; +BigInteger.prototype.modPowInt = bnModPowInt; + +// "constants" +BigInteger.ZERO = nbv(0); +BigInteger.ONE = nbv(1); + +// jsbn2 lib + +//Copyright (c) 2005-2009 Tom Wu +//All Rights Reserved. +//See "LICENSE" for details (See jsbn.js for LICENSE). + +//Extended JavaScript BN functions, required for RSA private ops. + +//Version 1.1: new BigInteger("0", 10) returns "proper" zero + +//(public) +function bnClone() { var r = nbi(); this.copyTo(r); return r; } + +//(public) return value as integer +function bnIntValue() { +if(this.s < 0) { + if(this.t == 1) return this.data[0]-this.DV; + else if(this.t == 0) return -1; +} else if(this.t == 1) return this.data[0]; +else if(this.t == 0) return 0; +// assumes 16 < DB < 32 +return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0]; +} + +//(public) return value as byte +function bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; } + +//(public) return value as short (assumes DB>=16) +function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; } + +//(protected) return x s.t. r^x < DV +function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } + +//(public) 0 if this == 0, 1 if this > 0 +function bnSigNum() { +if(this.s < 0) return -1; +else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0; +else return 1; +} + +//(protected) convert to radix string +function bnpToRadix(b) { +if(b == null) b = 10; +if(this.signum() == 0 || b < 2 || b > 36) return "0"; +var cs = this.chunkSize(b); +var a = Math.pow(b,cs); +var d = nbv(a), y = nbi(), z = nbi(), r = ""; +this.divRemTo(d,y,z); +while(y.signum() > 0) { + r = (a+z.intValue()).toString(b).substr(1) + r; + y.divRemTo(d,y,z); +} +return z.intValue().toString(b) + r; +} + +//(protected) convert from radix string +function bnpFromRadix(s,b) { +this.fromInt(0); +if(b == null) b = 10; +var cs = this.chunkSize(b); +var d = Math.pow(b,cs), mi = false, j = 0, w = 0; +for(var i = 0; i < s.length; ++i) { + var x = intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; + continue; + } + w = b*w+x; + if(++j >= cs) { + this.dMultiply(d); + this.dAddOffset(w,0); + j = 0; + w = 0; + } +} +if(j > 0) { + this.dMultiply(Math.pow(b,j)); + this.dAddOffset(w,0); +} +if(mi) BigInteger.ZERO.subTo(this,this); +} + +//(protected) alternate constructor +function bnpFromNumber(a,b,c) { +if("number" == typeof b) { + // new BigInteger(int,int,RNG) + if(a < 2) this.fromInt(1); + else { + this.fromNumber(a,c); + if(!this.testBit(a-1)) // force MSB set + this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); + if(this.isEven()) this.dAddOffset(1,0); // force odd + while(!this.isProbablePrime(b)) { + this.dAddOffset(2,0); + if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); + } + } +} else { + // new BigInteger(int,RNG) + var x = new Array(), t = a&7; + x.length = (a>>3)+1; + b.nextBytes(x); + if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; + this.fromString(x,256); +} +} + +//(public) convert to bigendian byte array +function bnToByteArray() { +var i = this.t, r = new Array(); +r[0] = this.s; +var p = this.DB-(i*this.DB)%8, d, k = 0; +if(i-- > 0) { + if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p) + r[k++] = d|(this.s<<(this.DB-p)); + while(i >= 0) { + if(p < 8) { + d = (this.data[i]&((1<<p)-1))<<(8-p); + d |= this.data[--i]>>(p+=this.DB-8); + } else { + d = (this.data[i]>>(p-=8))&0xff; + if(p <= 0) { p += this.DB; --i; } + } + if((d&0x80) != 0) d |= -256; + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; + if(k > 0 || d != this.s) r[k++] = d; + } +} +return r; +} + +function bnEquals(a) { return(this.compareTo(a)==0); } +function bnMin(a) { return(this.compareTo(a)<0)?this:a; } +function bnMax(a) { return(this.compareTo(a)>0)?this:a; } + +//(protected) r = this op a (bitwise) +function bnpBitwiseTo(a,op,r) { +var i, f, m = Math.min(a.t,this.t); +for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]); +if(a.t < this.t) { + f = a.s&this.DM; + for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f); + r.t = this.t; +} else { + f = this.s&this.DM; + for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]); + r.t = a.t; +} +r.s = op(this.s,a.s); +r.clamp(); +} + +//(public) this & a +function op_and(x,y) { return x&y; } +function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } + +//(public) this | a +function op_or(x,y) { return x|y; } +function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } + +//(public) this ^ a +function op_xor(x,y) { return x^y; } +function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } + +//(public) this & ~a +function op_andnot(x,y) { return x&~y; } +function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } + +//(public) ~this +function bnNot() { +var r = nbi(); +for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i]; +r.t = this.t; +r.s = ~this.s; +return r; +} + +//(public) this << n +function bnShiftLeft(n) { +var r = nbi(); +if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); +return r; +} + +//(public) this >> n +function bnShiftRight(n) { +var r = nbi(); +if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); +return r; +} + +//return index of lowest 1-bit in x, x < 2^31 +function lbit(x) { +if(x == 0) return -1; +var r = 0; +if((x&0xffff) == 0) { x >>= 16; r += 16; } +if((x&0xff) == 0) { x >>= 8; r += 8; } +if((x&0xf) == 0) { x >>= 4; r += 4; } +if((x&3) == 0) { x >>= 2; r += 2; } +if((x&1) == 0) ++r; +return r; +} + +//(public) returns index of lowest 1-bit (or -1 if none) +function bnGetLowestSetBit() { +for(var i = 0; i < this.t; ++i) + if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]); +if(this.s < 0) return this.t*this.DB; +return -1; +} + +//return number of 1 bits in x +function cbit(x) { +var r = 0; +while(x != 0) { x &= x-1; ++r; } +return r; +} + +//(public) return number of set bits +function bnBitCount() { +var r = 0, x = this.s&this.DM; +for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x); +return r; +} + +//(public) true iff nth bit is set +function bnTestBit(n) { +var j = Math.floor(n/this.DB); +if(j >= this.t) return(this.s!=0); +return((this.data[j]&(1<<(n%this.DB)))!=0); +} + +//(protected) this op (1<<n) +function bnpChangeBit(n,op) { +var r = BigInteger.ONE.shiftLeft(n); +this.bitwiseTo(r,op,r); +return r; +} + +//(public) this | (1<<n) +function bnSetBit(n) { return this.changeBit(n,op_or); } + +//(public) this & ~(1<<n) +function bnClearBit(n) { return this.changeBit(n,op_andnot); } + +//(public) this ^ (1<<n) +function bnFlipBit(n) { return this.changeBit(n,op_xor); } + +//(protected) r = this + a +function bnpAddTo(a,r) { +var i = 0, c = 0, m = Math.min(a.t,this.t); +while(i < m) { + c += this.data[i]+a.data[i]; + r.data[i++] = c&this.DM; + c >>= this.DB; +} +if(a.t < this.t) { + c += a.s; + while(i < this.t) { + c += this.data[i]; + r.data[i++] = c&this.DM; + c >>= this.DB; + } + c += this.s; +} else { + c += this.s; + while(i < a.t) { + c += a.data[i]; + r.data[i++] = c&this.DM; + c >>= this.DB; + } + c += a.s; +} +r.s = (c<0)?-1:0; +if(c > 0) r.data[i++] = c; +else if(c < -1) r.data[i++] = this.DV+c; +r.t = i; +r.clamp(); +} + +//(public) this + a +function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } + +//(public) this - a +function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } + +//(public) this * a +function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } + +//(public) this / a +function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } + +//(public) this % a +function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } + +//(public) [this/a,this%a] +function bnDivideAndRemainder(a) { +var q = nbi(), r = nbi(); +this.divRemTo(a,q,r); +return new Array(q,r); +} + +//(protected) this *= n, this >= 0, 1 < n < DV +function bnpDMultiply(n) { +this.data[this.t] = this.am(0,n-1,this,0,0,this.t); +++this.t; +this.clamp(); +} + +//(protected) this += n << w words, this >= 0 +function bnpDAddOffset(n,w) { +if(n == 0) return; +while(this.t <= w) this.data[this.t++] = 0; +this.data[w] += n; +while(this.data[w] >= this.DV) { + this.data[w] -= this.DV; + if(++w >= this.t) this.data[this.t++] = 0; + ++this.data[w]; +} +} + +//A "null" reducer +function NullExp() {} +function nNop(x) { return x; } +function nMulTo(x,y,r) { x.multiplyTo(y,r); } +function nSqrTo(x,r) { x.squareTo(r); } + +NullExp.prototype.convert = nNop; +NullExp.prototype.revert = nNop; +NullExp.prototype.mulTo = nMulTo; +NullExp.prototype.sqrTo = nSqrTo; + +//(public) this^e +function bnPow(e) { return this.exp(e,new NullExp()); } + +//(protected) r = lower n words of "this * a", a.t <= n +//"this" should be the larger one if appropriate. +function bnpMultiplyLowerTo(a,n,r) { +var i = Math.min(this.t+a.t,n); +r.s = 0; // assumes a,this >= 0 +r.t = i; +while(i > 0) r.data[--i] = 0; +var j; +for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t); +for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i); +r.clamp(); +} + +//(protected) r = "this * a" without lower n words, n > 0 +//"this" should be the larger one if appropriate. +function bnpMultiplyUpperTo(a,n,r) { +--n; +var i = r.t = this.t+a.t-n; +r.s = 0; // assumes a,this >= 0 +while(--i >= 0) r.data[i] = 0; +for(i = Math.max(n-this.t,0); i < a.t; ++i) + r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n); +r.clamp(); +r.drShiftTo(1,r); +} + +//Barrett modular reduction +function Barrett(m) { +// setup Barrett +this.r2 = nbi(); +this.q3 = nbi(); +BigInteger.ONE.dlShiftTo(2*m.t,this.r2); +this.mu = this.r2.divide(m); +this.m = m; +} + +function barrettConvert(x) { +if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); +else if(x.compareTo(this.m) < 0) return x; +else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } +} + +function barrettRevert(x) { return x; } + +//x = x mod m (HAC 14.42) +function barrettReduce(x) { +x.drShiftTo(this.m.t-1,this.r2); +if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } +this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); +this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); +while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); +x.subTo(this.r2,x); +while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +//r = x^2 mod m; x != r +function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +//r = x*y mod m; x,y != r +function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Barrett.prototype.convert = barrettConvert; +Barrett.prototype.revert = barrettRevert; +Barrett.prototype.reduce = barrettReduce; +Barrett.prototype.mulTo = barrettMulTo; +Barrett.prototype.sqrTo = barrettSqrTo; + +//(public) this^e % m (HAC 14.85) +function bnModPow(e,m) { +var i = e.bitLength(), k, r = nbv(1), z; +if(i <= 0) return r; +else if(i < 18) k = 1; +else if(i < 48) k = 3; +else if(i < 144) k = 4; +else if(i < 768) k = 5; +else k = 6; +if(i < 8) + z = new Classic(m); +else if(m.isEven()) + z = new Barrett(m); +else + z = new Montgomery(m); + +// precomputation +var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; +g[1] = z.convert(this); +if(k > 1) { + var g2 = nbi(); + z.sqrTo(g[1],g2); + while(n <= km) { + g[n] = nbi(); + z.mulTo(g2,g[n-2],g[n]); + n += 2; + } +} + +var j = e.t-1, w, is1 = true, r2 = nbi(), t; +i = nbits(e.data[j])-1; +while(j >= 0) { + if(i >= k1) w = (e.data[j]>>(i-k1))&km; + else { + w = (e.data[j]&((1<<(i+1))-1))<<(k1-i); + if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1); + } + + n = k; + while((w&1) == 0) { w >>= 1; --n; } + if((i -= n) < 0) { i += this.DB; --j; } + if(is1) { // ret == 1, don't bother squaring or multiplying it + g[w].copyTo(r); + is1 = false; + } else { + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } + z.mulTo(r2,g[w],r); + } + + while(j >= 0 && (e.data[j]&(1<<i)) == 0) { + z.sqrTo(r,r2); t = r; r = r2; r2 = t; + if(--i < 0) { i = this.DB-1; --j; } + } +} +return z.revert(r); +} + +//(public) gcd(this,a) (HAC 14.54) +function bnGCD(a) { +var x = (this.s<0)?this.negate():this.clone(); +var y = (a.s<0)?a.negate():a.clone(); +if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } +var i = x.getLowestSetBit(), g = y.getLowestSetBit(); +if(g < 0) return x; +if(i < g) g = i; +if(g > 0) { + x.rShiftTo(g,x); + y.rShiftTo(g,y); +} +while(x.signum() > 0) { + if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); + if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); + if(x.compareTo(y) >= 0) { + x.subTo(y,x); + x.rShiftTo(1,x); + } else { + y.subTo(x,y); + y.rShiftTo(1,y); + } +} +if(g > 0) y.lShiftTo(g,y); +return y; +} + +//(protected) this % n, n < 2^26 +function bnpModInt(n) { +if(n <= 0) return 0; +var d = this.DV%n, r = (this.s<0)?n-1:0; +if(this.t > 0) + if(d == 0) r = this.data[0]%n; + else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n; +return r; +} + +//(public) 1/this % m (HAC 14.61) +function bnModInverse(m) { +var ac = m.isEven(); +if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; +var u = m.clone(), v = this.clone(); +var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); +while(u.signum() != 0) { + while(u.isEven()) { + u.rShiftTo(1,u); + if(ac) { + if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } + a.rShiftTo(1,a); + } else if(!b.isEven()) b.subTo(m,b); + b.rShiftTo(1,b); + } + while(v.isEven()) { + v.rShiftTo(1,v); + if(ac) { + if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } + c.rShiftTo(1,c); + } else if(!d.isEven()) d.subTo(m,d); + d.rShiftTo(1,d); + } + if(u.compareTo(v) >= 0) { + u.subTo(v,u); + if(ac) a.subTo(c,a); + b.subTo(d,b); + } else { + v.subTo(u,v); + if(ac) c.subTo(a,c); + d.subTo(b,d); + } +} +if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; +if(d.compareTo(m) >= 0) return d.subtract(m); +if(d.signum() < 0) d.addTo(m,d); else return d; +if(d.signum() < 0) return d.add(m); else return d; +} + +var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; +var lplim = (1<<26)/lowprimes[lowprimes.length-1]; + +//(public) test primality with certainty >= 1-.5^t +function bnIsProbablePrime(t) { +var i, x = this.abs(); +if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) { + for(i = 0; i < lowprimes.length; ++i) + if(x.data[0] == lowprimes[i]) return true; + return false; +} +if(x.isEven()) return false; +i = 1; +while(i < lowprimes.length) { + var m = lowprimes[i], j = i+1; + while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; + m = x.modInt(m); + while(i < j) if(m%lowprimes[i++] == 0) return false; +} +return x.millerRabin(t); +} + +//(protected) true if probably prime (HAC 4.24, Miller-Rabin) +function bnpMillerRabin(t) { +var n1 = this.subtract(BigInteger.ONE); +var k = n1.getLowestSetBit(); +if(k <= 0) return false; +var r = n1.shiftRight(k); +var prng = bnGetPrng(); +var a; +for(var i = 0; i < t; ++i) { + // select witness 'a' at random from between 1 and n1 + do { + a = new BigInteger(this.bitLength(), prng); + } + while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); + var y = a.modPow(r,this); + if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { + var j = 1; + while(j++ < k && y.compareTo(n1) != 0) { + y = y.modPowInt(2,this); + if(y.compareTo(BigInteger.ONE) == 0) return false; + } + if(y.compareTo(n1) != 0) return false; + } +} +return true; +} + +// get pseudo random number generator +function bnGetPrng() { + // create prng with api that matches BigInteger secure random + return { + // x is an array to fill with bytes + nextBytes: function(x) { + for(var i = 0; i < x.length; ++i) { + x[i] = Math.floor(Math.random() * 0x0100); + } + } + }; +} + +//protected +BigInteger.prototype.chunkSize = bnpChunkSize; +BigInteger.prototype.toRadix = bnpToRadix; +BigInteger.prototype.fromRadix = bnpFromRadix; +BigInteger.prototype.fromNumber = bnpFromNumber; +BigInteger.prototype.bitwiseTo = bnpBitwiseTo; +BigInteger.prototype.changeBit = bnpChangeBit; +BigInteger.prototype.addTo = bnpAddTo; +BigInteger.prototype.dMultiply = bnpDMultiply; +BigInteger.prototype.dAddOffset = bnpDAddOffset; +BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; +BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; +BigInteger.prototype.modInt = bnpModInt; +BigInteger.prototype.millerRabin = bnpMillerRabin; + +//public +BigInteger.prototype.clone = bnClone; +BigInteger.prototype.intValue = bnIntValue; +BigInteger.prototype.byteValue = bnByteValue; +BigInteger.prototype.shortValue = bnShortValue; +BigInteger.prototype.signum = bnSigNum; +BigInteger.prototype.toByteArray = bnToByteArray; +BigInteger.prototype.equals = bnEquals; +BigInteger.prototype.min = bnMin; +BigInteger.prototype.max = bnMax; +BigInteger.prototype.and = bnAnd; +BigInteger.prototype.or = bnOr; +BigInteger.prototype.xor = bnXor; +BigInteger.prototype.andNot = bnAndNot; +BigInteger.prototype.not = bnNot; +BigInteger.prototype.shiftLeft = bnShiftLeft; +BigInteger.prototype.shiftRight = bnShiftRight; +BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; +BigInteger.prototype.bitCount = bnBitCount; +BigInteger.prototype.testBit = bnTestBit; +BigInteger.prototype.setBit = bnSetBit; +BigInteger.prototype.clearBit = bnClearBit; +BigInteger.prototype.flipBit = bnFlipBit; +BigInteger.prototype.add = bnAdd; +BigInteger.prototype.subtract = bnSubtract; +BigInteger.prototype.multiply = bnMultiply; +BigInteger.prototype.divide = bnDivide; +BigInteger.prototype.remainder = bnRemainder; +BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; +BigInteger.prototype.modPow = bnModPow; +BigInteger.prototype.modInverse = bnModInverse; +BigInteger.prototype.pow = bnPow; +BigInteger.prototype.gcd = bnGCD; +BigInteger.prototype.isProbablePrime = bnIsProbablePrime; + +//BigInteger interfaces not implemented in jsbn: + +//BigInteger(int signum, byte[] magnitude) +//double doubleValue() +//float floatValue() +//int hashCode() +//long longValue() +//static BigInteger valueOf(long val) + +forge.jsbn = forge.jsbn || {}; +forge.jsbn.BigInteger = BigInteger; + +} // end module implementation + +/* ########## Begin module wrapper ########## */ +var name = 'jsbn'; +if(typeof define !== 'function') { + // NodeJS -> AMD + if(typeof module === 'object' && module.exports) { + var nodeJS = true; + define = function(ids, factory) { + factory(require, module); + }; + } else { + // <script> + if(typeof forge === 'undefined') { + forge = {}; + } + return initModule(forge); + } +} +// AMD +var deps; +var defineFunc = function(require, module) { + module.exports = function(forge) { + var mods = deps.map(function(dep) { + return require(dep); + }).concat(initModule); + // handle circular dependencies + forge = forge || {}; + forge.defined = forge.defined || {}; + if(forge.defined[name]) { + return forge[name]; + } + forge.defined[name] = true; + for(var i = 0; i < mods.length; ++i) { + mods[i](forge); + } + return forge[name]; + }; +}; +var tmpDefine = define; +define = function(ids, factory) { + deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2); + if(nodeJS) { + delete define; + return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0)); + } + define = tmpDefine; + return define.apply(null, Array.prototype.slice.call(arguments, 0)); +}; +define(['require', 'module'], function() { + defineFunc.apply(null, Array.prototype.slice.call(arguments, 0)); +}); +})(); |