aboutsummaryrefslogtreecommitdiff
path: root/node_modules/@types/node/crypto.d.ts
blob: 7b1d6d9e4c059adc62571cc068f7d98ce3f9d124 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
/**
 * The `crypto` module provides cryptographic functionality that includes a set of
 * wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.
 *
 * ```js
 * const { createHmac } = await import('crypto');
 *
 * const secret = 'abcdefg';
 * const hash = createHmac('sha256', secret)
 *                .update('I love cupcakes')
 *                .digest('hex');
 * console.log(hash);
 * // Prints:
 * //   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
 * ```
 * @see [source](https://github.com/nodejs/node/blob/v16.7.0/lib/crypto.js)
 */
declare module 'crypto' {
    import * as stream from 'node:stream';
    import { PeerCertificate } from 'node:tls';
    interface Certificate {
        /**
         * @deprecated
         * @param spkac
         * @returns The challenge component of the `spkac` data structure,
         * which includes a public key and a challenge.
         */
        exportChallenge(spkac: BinaryLike): Buffer;
        /**
         * @deprecated
         * @param spkac
         * @param encoding The encoding of the spkac string.
         * @returns The public key component of the `spkac` data structure,
         * which includes a public key and a challenge.
         */
        exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer;
        /**
         * @deprecated
         * @param spkac
         * @returns `true` if the given `spkac` data structure is valid,
         * `false` otherwise.
         */
        verifySpkac(spkac: NodeJS.ArrayBufferView): boolean;
    }
    const Certificate: Certificate & {
        /** @deprecated since v14.9.0 - Use static methods of `crypto.Certificate` instead. */
        new (): Certificate;
        /** @deprecated since v14.9.0 - Use static methods of `crypto.Certificate` instead. */
        (): Certificate;
        /**
         * @param spkac
         * @returns The challenge component of the `spkac` data structure,
         * which includes a public key and a challenge.
         */
        exportChallenge(spkac: BinaryLike): Buffer;
        /**
         * @param spkac
         * @param encoding The encoding of the spkac string.
         * @returns The public key component of the `spkac` data structure,
         * which includes a public key and a challenge.
         */
        exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer;
        /**
         * @param spkac
         * @returns `true` if the given `spkac` data structure is valid,
         * `false` otherwise.
         */
        verifySpkac(spkac: NodeJS.ArrayBufferView): boolean;
    };
    namespace constants {
        // https://nodejs.org/dist/latest-v10.x/docs/api/crypto.html#crypto_crypto_constants
        const OPENSSL_VERSION_NUMBER: number;
        /** Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail. */
        const SSL_OP_ALL: number;
        /** Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */
        const SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION: number;
        /** Attempts to use the server's preferences instead of the client's when selecting a cipher. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */
        const SSL_OP_CIPHER_SERVER_PREFERENCE: number;
        /** Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER. */
        const SSL_OP_CISCO_ANYCONNECT: number;
        /** Instructs OpenSSL to turn on cookie exchange. */
        const SSL_OP_COOKIE_EXCHANGE: number;
        /** Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft. */
        const SSL_OP_CRYPTOPRO_TLSEXT_BUG: number;
        /** Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d. */
        const SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS: number;
        /** Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations. */
        const SSL_OP_EPHEMERAL_RSA: number;
        /** Allows initial connection to servers that do not support RI. */
        const SSL_OP_LEGACY_SERVER_CONNECT: number;
        const SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER: number;
        const SSL_OP_MICROSOFT_SESS_ID_BUG: number;
        /** Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation. */
        const SSL_OP_MSIE_SSLV2_RSA_PADDING: number;
        const SSL_OP_NETSCAPE_CA_DN_BUG: number;
        const SSL_OP_NETSCAPE_CHALLENGE_BUG: number;
        const SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG: number;
        const SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG: number;
        /** Instructs OpenSSL to disable support for SSL/TLS compression. */
        const SSL_OP_NO_COMPRESSION: number;
        const SSL_OP_NO_QUERY_MTU: number;
        /** Instructs OpenSSL to always start a new session when performing renegotiation. */
        const SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION: number;
        const SSL_OP_NO_SSLv2: number;
        const SSL_OP_NO_SSLv3: number;
        const SSL_OP_NO_TICKET: number;
        const SSL_OP_NO_TLSv1: number;
        const SSL_OP_NO_TLSv1_1: number;
        const SSL_OP_NO_TLSv1_2: number;
        const SSL_OP_PKCS1_CHECK_1: number;
        const SSL_OP_PKCS1_CHECK_2: number;
        /** Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters. */
        const SSL_OP_SINGLE_DH_USE: number;
        /** Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters. */
        const SSL_OP_SINGLE_ECDH_USE: number;
        const SSL_OP_SSLEAY_080_CLIENT_DH_BUG: number;
        const SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG: number;
        const SSL_OP_TLS_BLOCK_PADDING_BUG: number;
        const SSL_OP_TLS_D5_BUG: number;
        /** Instructs OpenSSL to disable version rollback attack detection. */
        const SSL_OP_TLS_ROLLBACK_BUG: number;
        const ENGINE_METHOD_RSA: number;
        const ENGINE_METHOD_DSA: number;
        const ENGINE_METHOD_DH: number;
        const ENGINE_METHOD_RAND: number;
        const ENGINE_METHOD_EC: number;
        const ENGINE_METHOD_CIPHERS: number;
        const ENGINE_METHOD_DIGESTS: number;
        const ENGINE_METHOD_PKEY_METHS: number;
        const ENGINE_METHOD_PKEY_ASN1_METHS: number;
        const ENGINE_METHOD_ALL: number;
        const ENGINE_METHOD_NONE: number;
        const DH_CHECK_P_NOT_SAFE_PRIME: number;
        const DH_CHECK_P_NOT_PRIME: number;
        const DH_UNABLE_TO_CHECK_GENERATOR: number;
        const DH_NOT_SUITABLE_GENERATOR: number;
        const ALPN_ENABLED: number;
        const RSA_PKCS1_PADDING: number;
        const RSA_SSLV23_PADDING: number;
        const RSA_NO_PADDING: number;
        const RSA_PKCS1_OAEP_PADDING: number;
        const RSA_X931_PADDING: number;
        const RSA_PKCS1_PSS_PADDING: number;
        /** Sets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying. */
        const RSA_PSS_SALTLEN_DIGEST: number;
        /** Sets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data. */
        const RSA_PSS_SALTLEN_MAX_SIGN: number;
        /** Causes the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature. */
        const RSA_PSS_SALTLEN_AUTO: number;
        const POINT_CONVERSION_COMPRESSED: number;
        const POINT_CONVERSION_UNCOMPRESSED: number;
        const POINT_CONVERSION_HYBRID: number;
        /** Specifies the built-in default cipher list used by Node.js (colon-separated values). */
        const defaultCoreCipherList: string;
        /** Specifies the active default cipher list used by the current Node.js process  (colon-separated values). */
        const defaultCipherList: string;
    }
    interface HashOptions extends stream.TransformOptions {
        /**
         * For XOF hash functions such as `shake256`, the
         * outputLength option can be used to specify the desired output length in bytes.
         */
        outputLength?: number | undefined;
    }
    /** @deprecated since v10.0.0 */
    const fips: boolean;
    /**
     * Creates and returns a `Hash` object that can be used to generate hash digests
     * using the given `algorithm`. Optional `options` argument controls stream
     * behavior. For XOF hash functions such as `'shake256'`, the `outputLength` option
     * can be used to specify the desired output length in bytes.
     *
     * The `algorithm` is dependent on the available algorithms supported by the
     * version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
     * On recent releases of OpenSSL, `openssl list -digest-algorithms`(`openssl list-message-digest-algorithms` for older versions of OpenSSL) will
     * display the available digest algorithms.
     *
     * Example: generating the sha256 sum of a file
     *
     * ```js
     * import {
     *   createReadStream
     * } from 'fs';
     * import { argv } from 'process';
     * const {
     *   createHash
     * } = await import('crypto');
     *
     * const filename = argv[2];
     *
     * const hash = createHash('sha256');
     *
     * const input = createReadStream(filename);
     * input.on('readable', () => {
     *   // Only one element is going to be produced by the
     *   // hash stream.
     *   const data = input.read();
     *   if (data)
     *     hash.update(data);
     *   else {
     *     console.log(`${hash.digest('hex')} ${filename}`);
     *   }
     * });
     * ```
     * @since v0.1.92
     * @param options `stream.transform` options
     */
    function createHash(algorithm: string, options?: HashOptions): Hash;
    /**
     * Creates and returns an `Hmac` object that uses the given `algorithm` and `key`.
     * Optional `options` argument controls stream behavior.
     *
     * The `algorithm` is dependent on the available algorithms supported by the
     * version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
     * On recent releases of OpenSSL, `openssl list -digest-algorithms`(`openssl list-message-digest-algorithms` for older versions of OpenSSL) will
     * display the available digest algorithms.
     *
     * The `key` is the HMAC key used to generate the cryptographic HMAC hash. If it is
     * a `KeyObject`, its type must be `secret`.
     *
     * Example: generating the sha256 HMAC of a file
     *
     * ```js
     * import {
     *   createReadStream
     * } from 'fs';
     * import { argv } from 'process';
     * const {
     *   createHmac
     * } = await import('crypto');
     *
     * const filename = argv[2];
     *
     * const hmac = createHmac('sha256', 'a secret');
     *
     * const input = createReadStream(filename);
     * input.on('readable', () => {
     *   // Only one element is going to be produced by the
     *   // hash stream.
     *   const data = input.read();
     *   if (data)
     *     hmac.update(data);
     *   else {
     *     console.log(`${hmac.digest('hex')} ${filename}`);
     *   }
     * });
     * ```
     * @since v0.1.94
     * @param options `stream.transform` options
     */
    function createHmac(algorithm: string, key: BinaryLike | KeyObject, options?: stream.TransformOptions): Hmac;
    // https://nodejs.org/api/buffer.html#buffer_buffers_and_character_encodings
    type BinaryToTextEncoding = 'base64' | 'hex';
    type CharacterEncoding = 'utf8' | 'utf-8' | 'utf16le' | 'latin1';
    type LegacyCharacterEncoding = 'ascii' | 'binary' | 'ucs2' | 'ucs-2';
    type Encoding = BinaryToTextEncoding | CharacterEncoding | LegacyCharacterEncoding;
    type ECDHKeyFormat = 'compressed' | 'uncompressed' | 'hybrid';
    /**
     * The `Hash` class is a utility for creating hash digests of data. It can be
     * used in one of two ways:
     *
     * * As a `stream` that is both readable and writable, where data is written
     * to produce a computed hash digest on the readable side, or
     * * Using the `hash.update()` and `hash.digest()` methods to produce the
     * computed hash.
     *
     * The {@link createHash} method is used to create `Hash` instances. `Hash`objects are not to be created directly using the `new` keyword.
     *
     * Example: Using `Hash` objects as streams:
     *
     * ```js
     * const {
     *   createHash
     * } = await import('crypto');
     *
     * const hash = createHash('sha256');
     *
     * hash.on('readable', () => {
     *   // Only one element is going to be produced by the
     *   // hash stream.
     *   const data = hash.read();
     *   if (data) {
     *     console.log(data.toString('hex'));
     *     // Prints:
     *     //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
     *   }
     * });
     *
     * hash.write('some data to hash');
     * hash.end();
     * ```
     *
     * Example: Using `Hash` and piped streams:
     *
     * ```js
     * import { createReadStream } from 'fs';
     * import { stdout } from 'process';
     * const { createHash } = await import('crypto');
     *
     * const hash = createHash('sha256');
     *
     * const input = createReadStream('test.js');
     * input.pipe(hash).setEncoding('hex').pipe(stdout);
     * ```
     *
     * Example: Using the `hash.update()` and `hash.digest()` methods:
     *
     * ```js
     * const {
     *   createHash
     * } = await import('crypto');
     *
     * const hash = createHash('sha256');
     *
     * hash.update('some data to hash');
     * console.log(hash.digest('hex'));
     * // Prints:
     * //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
     * ```
     * @since v0.1.92
     */
    class Hash extends stream.Transform {
        private constructor();
        /**
         * Creates a new `Hash` object that contains a deep copy of the internal state
         * of the current `Hash` object.
         *
         * The optional `options` argument controls stream behavior. For XOF hash
         * functions such as `'shake256'`, the `outputLength` option can be used to
         * specify the desired output length in bytes.
         *
         * An error is thrown when an attempt is made to copy the `Hash` object after
         * its `hash.digest()` method has been called.
         *
         * ```js
         * // Calculate a rolling hash.
         * const {
         *   createHash
         * } = await import('crypto');
         *
         * const hash = createHash('sha256');
         *
         * hash.update('one');
         * console.log(hash.copy().digest('hex'));
         *
         * hash.update('two');
         * console.log(hash.copy().digest('hex'));
         *
         * hash.update('three');
         * console.log(hash.copy().digest('hex'));
         *
         * // Etc.
         * ```
         * @since v13.1.0
         * @param options `stream.transform` options
         */
        copy(options?: stream.TransformOptions): Hash;
        /**
         * Updates the hash content with the given `data`, the encoding of which
         * is given in `inputEncoding`.
         * If `encoding` is not provided, and the `data` is a string, an
         * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
         *
         * This can be called many times with new data as it is streamed.
         * @since v0.1.92
         * @param inputEncoding The `encoding` of the `data` string.
         */
        update(data: BinaryLike): Hash;
        update(data: string, inputEncoding: Encoding): Hash;
        /**
         * Calculates the digest of all of the data passed to be hashed (using the `hash.update()` method).
         * If `encoding` is provided a string will be returned; otherwise
         * a `Buffer` is returned.
         *
         * The `Hash` object can not be used again after `hash.digest()` method has been
         * called. Multiple calls will cause an error to be thrown.
         * @since v0.1.92
         * @param encoding The `encoding` of the return value.
         */
        digest(): Buffer;
        digest(encoding: BinaryToTextEncoding): string;
    }
    /**
     * The `Hmac` class is a utility for creating cryptographic HMAC digests. It can
     * be used in one of two ways:
     *
     * * As a `stream` that is both readable and writable, where data is written
     * to produce a computed HMAC digest on the readable side, or
     * * Using the `hmac.update()` and `hmac.digest()` methods to produce the
     * computed HMAC digest.
     *
     * The {@link createHmac} method is used to create `Hmac` instances. `Hmac`objects are not to be created directly using the `new` keyword.
     *
     * Example: Using `Hmac` objects as streams:
     *
     * ```js
     * const {
     *   createHmac
     * } = await import('crypto');
     *
     * const hmac = createHmac('sha256', 'a secret');
     *
     * hmac.on('readable', () => {
     *   // Only one element is going to be produced by the
     *   // hash stream.
     *   const data = hmac.read();
     *   if (data) {
     *     console.log(data.toString('hex'));
     *     // Prints:
     *     //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
     *   }
     * });
     *
     * hmac.write('some data to hash');
     * hmac.end();
     * ```
     *
     * Example: Using `Hmac` and piped streams:
     *
     * ```js
     * import { createReadStream } from 'fs';
     * import { stdout } from 'process';
     * const {
     *   createHmac
     * } = await import('crypto');
     *
     * const hmac = createHmac('sha256', 'a secret');
     *
     * const input = createReadStream('test.js');
     * input.pipe(hmac).pipe(stdout);
     * ```
     *
     * Example: Using the `hmac.update()` and `hmac.digest()` methods:
     *
     * ```js
     * const {
     *   createHmac
     * } = await import('crypto');
     *
     * const hmac = createHmac('sha256', 'a secret');
     *
     * hmac.update('some data to hash');
     * console.log(hmac.digest('hex'));
     * // Prints:
     * //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
     * ```
     * @since v0.1.94
     */
    class Hmac extends stream.Transform {
        private constructor();
        /**
         * Updates the `Hmac` content with the given `data`, the encoding of which
         * is given in `inputEncoding`.
         * If `encoding` is not provided, and the `data` is a string, an
         * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
         *
         * This can be called many times with new data as it is streamed.
         * @since v0.1.94
         * @param inputEncoding The `encoding` of the `data` string.
         */
        update(data: BinaryLike): Hmac;
        update(data: string, inputEncoding: Encoding): Hmac;
        /**
         * Calculates the HMAC digest of all of the data passed using `hmac.update()`.
         * If `encoding` is
         * provided a string is returned; otherwise a `Buffer` is returned;
         *
         * The `Hmac` object can not be used again after `hmac.digest()` has been
         * called. Multiple calls to `hmac.digest()` will result in an error being thrown.
         * @since v0.1.94
         * @param encoding The `encoding` of the return value.
         */
        digest(): Buffer;
        digest(encoding: BinaryToTextEncoding): string;
    }
    type KeyObjectType = 'secret' | 'public' | 'private';
    interface KeyExportOptions<T extends KeyFormat> {
        type: 'pkcs1' | 'spki' | 'pkcs8' | 'sec1';
        format: T;
        cipher?: string | undefined;
        passphrase?: string | Buffer | undefined;
    }
    interface JwkKeyExportOptions {
        format: 'jwk';
    }
    interface JsonWebKey {
        crv?: string | undefined;
        d?: string | undefined;
        dp?: string | undefined;
        dq?: string | undefined;
        e?: string | undefined;
        k?: string | undefined;
        kty?: string | undefined;
        n?: string | undefined;
        p?: string | undefined;
        q?: string | undefined;
        qi?: string | undefined;
        x?: string | undefined;
        y?: string | undefined;
        [key: string]: unknown;
    }
    interface AsymmetricKeyDetails {
        /**
         * Key size in bits (RSA, DSA).
         */
        modulusLength?: number | undefined;
        /**
         * Public exponent (RSA).
         */
        publicExponent?: bigint | undefined;
        /**
         * Size of q in bits (DSA).
         */
        divisorLength?: number | undefined;
        /**
         * Name of the curve (EC).
         */
        namedCurve?: string | undefined;
    }
    interface JwkKeyExportOptions {
        format: 'jwk';
    }
    /**
     * Node.js uses a `KeyObject` class to represent a symmetric or asymmetric key,
     * and each kind of key exposes different functions. The {@link createSecretKey}, {@link createPublicKey} and {@link createPrivateKey} methods are used to create `KeyObject`instances. `KeyObject`
     * objects are not to be created directly using the `new`keyword.
     *
     * Most applications should consider using the new `KeyObject` API instead of
     * passing keys as strings or `Buffer`s due to improved security features.
     *
     * `KeyObject` instances can be passed to other threads via `postMessage()`.
     * The receiver obtains a cloned `KeyObject`, and the `KeyObject` does not need to
     * be listed in the `transferList` argument.
     * @since v11.6.0
     */
    class KeyObject {
        private constructor();
        /**
         * For asymmetric keys, this property represents the type of the key. Supported key
         * types are:
         *
         * * `'rsa'` (OID 1.2.840.113549.1.1.1)
         * * `'rsa-pss'` (OID 1.2.840.113549.1.1.10)
         * * `'dsa'` (OID 1.2.840.10040.4.1)
         * * `'ec'` (OID 1.2.840.10045.2.1)
         * * `'x25519'` (OID 1.3.101.110)
         * * `'x448'` (OID 1.3.101.111)
         * * `'ed25519'` (OID 1.3.101.112)
         * * `'ed448'` (OID 1.3.101.113)
         * * `'dh'` (OID 1.2.840.113549.1.3.1)
         *
         * This property is `undefined` for unrecognized `KeyObject` types and symmetric
         * keys.
         * @since v11.6.0
         */
        asymmetricKeyType?: KeyType | undefined;
        /**
         * For asymmetric keys, this property represents the size of the embedded key in
         * bytes. This property is `undefined` for symmetric keys.
         */
        asymmetricKeySize?: number | undefined;
        /**
         * This property exists only on asymmetric keys. Depending on the type of the key,
         * this object contains information about the key. None of the information obtained
         * through this property can be used to uniquely identify a key or to compromise
         * the security of the key.
         *
         * RSA-PSS parameters, DH, or any future key type details might be exposed via this
         * API using additional attributes.
         * @since v15.7.0
         */
        asymmetricKeyDetails?: AsymmetricKeyDetails | undefined;
        /**
         * For symmetric keys, the following encoding options can be used:
         *
         * For public keys, the following encoding options can be used:
         *
         * For private keys, the following encoding options can be used:
         *
         * The result type depends on the selected encoding format, when PEM the
         * result is a string, when DER it will be a buffer containing the data
         * encoded as DER, when [JWK](https://tools.ietf.org/html/rfc7517) it will be an object.
         *
         * When [JWK](https://tools.ietf.org/html/rfc7517) encoding format was selected, all other encoding options are
         * ignored.
         *
         * PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of
         * the `cipher` and `format` options. The PKCS#8 `type` can be used with any`format` to encrypt any key algorithm (RSA, EC, or DH) by specifying a`cipher`. PKCS#1 and SEC1 can only be
         * encrypted by specifying a `cipher`when the PEM `format` is used. For maximum compatibility, use PKCS#8 for
         * encrypted private keys. Since PKCS#8 defines its own
         * encryption mechanism, PEM-level encryption is not supported when encrypting
         * a PKCS#8 key. See [RFC 5208](https://www.rfc-editor.org/rfc/rfc5208.txt) for PKCS#8 encryption and [RFC 1421](https://www.rfc-editor.org/rfc/rfc1421.txt) for
         * PKCS#1 and SEC1 encryption.
         * @since v11.6.0
         */
        export(options: KeyExportOptions<'pem'>): string | Buffer;
        export(options?: KeyExportOptions<'der'>): Buffer;
        export(options?: JwkKeyExportOptions): JsonWebKey;
        /**
         * For secret keys, this property represents the size of the key in bytes. This
         * property is `undefined` for asymmetric keys.
         * @since v11.6.0
         */
        symmetricKeySize?: number | undefined;
        /**
         * Depending on the type of this `KeyObject`, this property is either`'secret'` for secret (symmetric) keys, `'public'` for public (asymmetric) keys
         * or `'private'` for private (asymmetric) keys.
         * @since v11.6.0
         */
        type: KeyObjectType;
    }
    type CipherCCMTypes = 'aes-128-ccm' | 'aes-192-ccm' | 'aes-256-ccm' | 'chacha20-poly1305';
    type CipherGCMTypes = 'aes-128-gcm' | 'aes-192-gcm' | 'aes-256-gcm';
    type BinaryLike = string | NodeJS.ArrayBufferView;
    type CipherKey = BinaryLike | KeyObject;
    interface CipherCCMOptions extends stream.TransformOptions {
        authTagLength: number;
    }
    interface CipherGCMOptions extends stream.TransformOptions {
        authTagLength?: number | undefined;
    }
    /**
     * Creates and returns a `Cipher` object that uses the given `algorithm` and`password`.
     *
     * The `options` argument controls stream behavior and is optional except when a
     * cipher in CCM or OCB mode is used (e.g. `'aes-128-ccm'`). In that case, the`authTagLength` option is required and specifies the length of the
     * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication
     * tag that will be returned by `getAuthTag()` and defaults to 16 bytes.
     *
     * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
     * recent OpenSSL releases, `openssl list -cipher-algorithms`(`openssl list-cipher-algorithms` for older versions of OpenSSL) will
     * display the available cipher algorithms.
     *
     * The `password` is used to derive the cipher key and initialization vector (IV).
     * The value must be either a `'latin1'` encoded string, a `Buffer`, a`TypedArray`, or a `DataView`.
     *
     * The implementation of `crypto.createCipher()` derives keys using the OpenSSL
     * function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one
     * iteration, and no salt. The lack of salt allows dictionary attacks as the same
     * password always creates the same key. The low iteration count and
     * non-cryptographically secure hash algorithm allow passwords to be tested very
     * rapidly.
     *
     * In line with OpenSSL's recommendation to use a more modern algorithm instead of[`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that
     * developers derive a key and IV on
     * their own using {@link scrypt} and to use {@link createCipheriv} to create the `Cipher` object. Users should not use ciphers with counter mode
     * (e.g. CTR, GCM, or CCM) in `crypto.createCipher()`. A warning is emitted when
     * they are used in order to avoid the risk of IV reuse that causes
     * vulnerabilities. For the case when IV is reused in GCM, see [Nonce-Disrespecting Adversaries](https://github.com/nonce-disrespect/nonce-disrespect) for details.
     * @since v0.1.94
     * @deprecated Since v10.0.0 - Use {@link createCipheriv} instead.
     * @param options `stream.transform` options
     */
    function createCipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): CipherCCM;
    /** @deprecated since v10.0.0 use `createCipheriv()` */
    function createCipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): CipherGCM;
    /** @deprecated since v10.0.0 use `createCipheriv()` */
    function createCipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Cipher;
    /**
     * Creates and returns a `Cipher` object, with the given `algorithm`, `key` and
     * initialization vector (`iv`).
     *
     * The `options` argument controls stream behavior and is optional except when a
     * cipher in CCM or OCB mode is used (e.g. `'aes-128-ccm'`). In that case, the`authTagLength` option is required and specifies the length of the
     * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication
     * tag that will be returned by `getAuthTag()` and defaults to 16 bytes.
     *
     * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
     * recent OpenSSL releases, `openssl list -cipher-algorithms`(`openssl list-cipher-algorithms` for older versions of OpenSSL) will
     * display the available cipher algorithms.
     *
     * The `key` is the raw key used by the `algorithm` and `iv` is an[initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded
     * strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be
     * a `KeyObject` of type `secret`. If the cipher does not need
     * an initialization vector, `iv` may be `null`.
     *
     * When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`.
     *
     * Initialization vectors should be unpredictable and unique; ideally, they will be
     * cryptographically random. They do not have to be secret: IVs are typically just
     * added to ciphertext messages unencrypted. It may sound contradictory that
     * something has to be unpredictable and unique, but does not have to be secret;
     * remember that an attacker must not be able to predict ahead of time what a
     * given IV will be.
     * @since v0.1.94
     * @param options `stream.transform` options
     */
    function createCipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike | null, options: CipherCCMOptions): CipherCCM;
    function createCipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike | null, options?: CipherGCMOptions): CipherGCM;
    function createCipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Cipher;
    /**
     * Instances of the `Cipher` class are used to encrypt data. The class can be
     * used in one of two ways:
     *
     * * As a `stream` that is both readable and writable, where plain unencrypted
     * data is written to produce encrypted data on the readable side, or
     * * Using the `cipher.update()` and `cipher.final()` methods to produce
     * the encrypted data.
     *
     * The {@link createCipher} or {@link createCipheriv} methods are
     * used to create `Cipher` instances. `Cipher` objects are not to be created
     * directly using the `new` keyword.
     *
     * Example: Using `Cipher` objects as streams:
     *
     * ```js
     * const {
     *   scrypt,
     *   randomFill,
     *   createCipheriv
     * } = await import('crypto');
     *
     * const algorithm = 'aes-192-cbc';
     * const password = 'Password used to generate key';
     *
     * // First, we'll generate the key. The key length is dependent on the algorithm.
     * // In this case for aes192, it is 24 bytes (192 bits).
     * scrypt(password, 'salt', 24, (err, key) => {
     *   if (err) throw err;
     *   // Then, we'll generate a random initialization vector
     *   randomFill(new Uint8Array(16), (err, iv) => {
     *     if (err) throw err;
     *
     *     // Once we have the key and iv, we can create and use the cipher...
     *     const cipher = createCipheriv(algorithm, key, iv);
     *
     *     let encrypted = '';
     *     cipher.setEncoding('hex');
     *
     *     cipher.on('data', (chunk) => encrypted += chunk);
     *     cipher.on('end', () => console.log(encrypted));
     *
     *     cipher.write('some clear text data');
     *     cipher.end();
     *   });
     * });
     * ```
     *
     * Example: Using `Cipher` and piped streams:
     *
     * ```js
     * import {
     *   createReadStream,
     *   createWriteStream,
     * } from 'fs';
     *
     * import {
     *   pipeline
     * } from 'stream';
     *
     * const {
     *   scrypt,
     *   randomFill,
     *   createCipheriv
     * } = await import('crypto');
     *
     * const algorithm = 'aes-192-cbc';
     * const password = 'Password used to generate key';
     *
     * // First, we'll generate the key. The key length is dependent on the algorithm.
     * // In this case for aes192, it is 24 bytes (192 bits).
     * scrypt(password, 'salt', 24, (err, key) => {
     *   if (err) throw err;
     *   // Then, we'll generate a random initialization vector
     *   randomFill(new Uint8Array(16), (err, iv) => {
     *     if (err) throw err;
     *
     *     const cipher = createCipheriv(algorithm, key, iv);
     *
     *     const input = createReadStream('test.js');
     *     const output = createWriteStream('test.enc');
     *
     *     pipeline(input, cipher, output, (err) => {
     *       if (err) throw err;
     *     });
     *   });
     * });
     * ```
     *
     * Example: Using the `cipher.update()` and `cipher.final()` methods:
     *
     * ```js
     * const {
     *   scrypt,
     *   randomFill,
     *   createCipheriv
     * } = await import('crypto');
     *
     * const algorithm = 'aes-192-cbc';
     * const password = 'Password used to generate key';
     *
     * // First, we'll generate the key. The key length is dependent on the algorithm.
     * // In this case for aes192, it is 24 bytes (192 bits).
     * scrypt(password, 'salt', 24, (err, key) => {
     *   if (err) throw err;
     *   // Then, we'll generate a random initialization vector
     *   randomFill(new Uint8Array(16), (err, iv) => {
     *     if (err) throw err;
     *
     *     const cipher = createCipheriv(algorithm, key, iv);
     *
     *     let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
     *     encrypted += cipher.final('hex');
     *     console.log(encrypted);
     *   });
     * });
     * ```
     * @since v0.1.94
     */
    class Cipher extends stream.Transform {
        private constructor();
        /**
         * Updates the cipher with `data`. If the `inputEncoding` argument is given,
         * the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`, `TypedArray`, or`DataView`. If `data` is a `Buffer`,
         * `TypedArray`, or `DataView`, then`inputEncoding` is ignored.
         *
         * The `outputEncoding` specifies the output format of the enciphered
         * data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned.
         *
         * The `cipher.update()` method can be called multiple times with new data until `cipher.final()` is called. Calling `cipher.update()` after `cipher.final()` will result in an error being
         * thrown.
         * @since v0.1.94
         * @param inputEncoding The `encoding` of the data.
         * @param outputEncoding The `encoding` of the return value.
         */
        update(data: BinaryLike): Buffer;
        update(data: string, inputEncoding: Encoding): Buffer;
        update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string;
        update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string;
        /**
         * Once the `cipher.final()` method has been called, the `Cipher` object can no
         * longer be used to encrypt data. Attempts to call `cipher.final()` more than
         * once will result in an error being thrown.
         * @since v0.1.94
         * @param outputEncoding The `encoding` of the return value.
         * @return Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned.
         */
        final(): Buffer;
        final(outputEncoding: BufferEncoding): string;
        /**
         * When using block encryption algorithms, the `Cipher` class will automatically
         * add padding to the input data to the appropriate block size. To disable the
         * default padding call `cipher.setAutoPadding(false)`.
         *
         * When `autoPadding` is `false`, the length of the entire input data must be a
         * multiple of the cipher's block size or `cipher.final()` will throw an error.
         * Disabling automatic padding is useful for non-standard padding, for instance
         * using `0x0` instead of PKCS padding.
         *
         * The `cipher.setAutoPadding()` method must be called before `cipher.final()`.
         * @since v0.7.1
         * @param [autoPadding=true]
         * @return for method chaining.
         */
        setAutoPadding(autoPadding?: boolean): this;
    }
    interface CipherCCM extends Cipher {
        setAAD(
            buffer: NodeJS.ArrayBufferView,
            options: {
                plaintextLength: number;
            }
        ): this;
        getAuthTag(): Buffer;
    }
    interface CipherGCM extends Cipher {
        setAAD(
            buffer: NodeJS.ArrayBufferView,
            options?: {
                plaintextLength: number;
            }
        ): this;
        getAuthTag(): Buffer;
    }
    /**
     * Creates and returns a `Decipher` object that uses the given `algorithm` and`password` (key).
     *
     * The `options` argument controls stream behavior and is optional except when a
     * cipher in CCM or OCB mode is used (e.g. `'aes-128-ccm'`). In that case, the`authTagLength` option is required and specifies the length of the
     * authentication tag in bytes, see `CCM mode`.
     *
     * The implementation of `crypto.createDecipher()` derives keys using the OpenSSL
     * function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one
     * iteration, and no salt. The lack of salt allows dictionary attacks as the same
     * password always creates the same key. The low iteration count and
     * non-cryptographically secure hash algorithm allow passwords to be tested very
     * rapidly.
     *
     * In line with OpenSSL's recommendation to use a more modern algorithm instead of[`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that
     * developers derive a key and IV on
     * their own using {@link scrypt} and to use {@link createDecipheriv} to create the `Decipher` object.
     * @since v0.1.94
     * @deprecated Since v10.0.0 - Use {@link createDecipheriv} instead.
     * @param options `stream.transform` options
     */
    function createDecipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): DecipherCCM;
    /** @deprecated since v10.0.0 use `createDecipheriv()` */
    function createDecipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): DecipherGCM;
    /** @deprecated since v10.0.0 use `createDecipheriv()` */
    function createDecipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Decipher;
    /**
     * Creates and returns a `Decipher` object that uses the given `algorithm`, `key`and initialization vector (`iv`).
     *
     * The `options` argument controls stream behavior and is optional except when a
     * cipher in CCM or OCB mode is used (e.g. `'aes-128-ccm'`). In that case, the`authTagLength` option is required and specifies the length of the
     * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to restrict accepted authentication tags
     * to those with the specified length.
     *
     * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
     * recent OpenSSL releases, `openssl list -cipher-algorithms`(`openssl list-cipher-algorithms` for older versions of OpenSSL) will
     * display the available cipher algorithms.
     *
     * The `key` is the raw key used by the `algorithm` and `iv` is an[initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded
     * strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be
     * a `KeyObject` of type `secret`. If the cipher does not need
     * an initialization vector, `iv` may be `null`.
     *
     * When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`.
     *
     * Initialization vectors should be unpredictable and unique; ideally, they will be
     * cryptographically random. They do not have to be secret: IVs are typically just
     * added to ciphertext messages unencrypted. It may sound contradictory that
     * something has to be unpredictable and unique, but does not have to be secret;
     * remember that an attacker must not be able to predict ahead of time what a given
     * IV will be.
     * @since v0.1.94
     * @param options `stream.transform` options
     */
    function createDecipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike | null, options: CipherCCMOptions): DecipherCCM;
    function createDecipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike | null, options?: CipherGCMOptions): DecipherGCM;
    function createDecipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Decipher;
    /**
     * Instances of the `Decipher` class are used to decrypt data. The class can be
     * used in one of two ways:
     *
     * * As a `stream` that is both readable and writable, where plain encrypted
     * data is written to produce unencrypted data on the readable side, or
     * * Using the `decipher.update()` and `decipher.final()` methods to
     * produce the unencrypted data.
     *
     * The {@link createDecipher} or {@link createDecipheriv} methods are
     * used to create `Decipher` instances. `Decipher` objects are not to be created
     * directly using the `new` keyword.
     *
     * Example: Using `Decipher` objects as streams:
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const {
     *   scryptSync,
     *   createDecipheriv
     * } = await import('crypto');
     *
     * const algorithm = 'aes-192-cbc';
     * const password = 'Password used to generate key';
     * // Key length is dependent on the algorithm. In this case for aes192, it is
     * // 24 bytes (192 bits).
     * // Use the async `crypto.scrypt()` instead.
     * const key = scryptSync(password, 'salt', 24);
     * // The IV is usually passed along with the ciphertext.
     * const iv = Buffer.alloc(16, 0); // Initialization vector.
     *
     * const decipher = createDecipheriv(algorithm, key, iv);
     *
     * let decrypted = '';
     * decipher.on('readable', () => {
     *   while (null !== (chunk = decipher.read())) {
     *     decrypted += chunk.toString('utf8');
     *   }
     * });
     * decipher.on('end', () => {
     *   console.log(decrypted);
     *   // Prints: some clear text data
     * });
     *
     * // Encrypted with same algorithm, key and iv.
     * const encrypted =
     *   'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
     * decipher.write(encrypted, 'hex');
     * decipher.end();
     * ```
     *
     * Example: Using `Decipher` and piped streams:
     *
     * ```js
     * import {
     *   createReadStream,
     *   createWriteStream,
     * } from 'fs';
     * import { Buffer } from 'buffer';
     * const {
     *   scryptSync,
     *   createDecipheriv
     * } = await import('crypto');
     *
     * const algorithm = 'aes-192-cbc';
     * const password = 'Password used to generate key';
     * // Use the async `crypto.scrypt()` instead.
     * const key = scryptSync(password, 'salt', 24);
     * // The IV is usually passed along with the ciphertext.
     * const iv = Buffer.alloc(16, 0); // Initialization vector.
     *
     * const decipher = createDecipheriv(algorithm, key, iv);
     *
     * const input = createReadStream('test.enc');
     * const output = createWriteStream('test.js');
     *
     * input.pipe(decipher).pipe(output);
     * ```
     *
     * Example: Using the `decipher.update()` and `decipher.final()` methods:
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const {
     *   scryptSync,
     *   createDecipheriv
     * } = await import('crypto');
     *
     * const algorithm = 'aes-192-cbc';
     * const password = 'Password used to generate key';
     * // Use the async `crypto.scrypt()` instead.
     * const key = scryptSync(password, 'salt', 24);
     * // The IV is usually passed along with the ciphertext.
     * const iv = Buffer.alloc(16, 0); // Initialization vector.
     *
     * const decipher = createDecipheriv(algorithm, key, iv);
     *
     * // Encrypted using same algorithm, key and iv.
     * const encrypted =
     *   'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
     * let decrypted = decipher.update(encrypted, 'hex', 'utf8');
     * decrypted += decipher.final('utf8');
     * console.log(decrypted);
     * // Prints: some clear text data
     * ```
     * @since v0.1.94
     */
    class Decipher extends stream.Transform {
        private constructor();
        /**
         * Updates the decipher with `data`. If the `inputEncoding` argument is given,
         * the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`. If `data` is a `Buffer` then `inputEncoding` is
         * ignored.
         *
         * The `outputEncoding` specifies the output format of the enciphered
         * data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned.
         *
         * The `decipher.update()` method can be called multiple times with new data until `decipher.final()` is called. Calling `decipher.update()` after `decipher.final()` will result in an error
         * being thrown.
         * @since v0.1.94
         * @param inputEncoding The `encoding` of the `data` string.
         * @param outputEncoding The `encoding` of the return value.
         */
        update(data: NodeJS.ArrayBufferView): Buffer;
        update(data: string, inputEncoding: Encoding): Buffer;
        update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string;
        update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string;
        /**
         * Once the `decipher.final()` method has been called, the `Decipher` object can
         * no longer be used to decrypt data. Attempts to call `decipher.final()` more
         * than once will result in an error being thrown.
         * @since v0.1.94
         * @param outputEncoding The `encoding` of the return value.
         * @return Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned.
         */
        final(): Buffer;
        final(outputEncoding: BufferEncoding): string;
        /**
         * When data has been encrypted without standard block padding, calling`decipher.setAutoPadding(false)` will disable automatic padding to prevent `decipher.final()` from checking for and
         * removing padding.
         *
         * Turning auto padding off will only work if the input data's length is a
         * multiple of the ciphers block size.
         *
         * The `decipher.setAutoPadding()` method must be called before `decipher.final()`.
         * @since v0.7.1
         * @param [autoPadding=true]
         * @return for method chaining.
         */
        setAutoPadding(auto_padding?: boolean): this;
    }
    interface DecipherCCM extends Decipher {
        setAuthTag(buffer: NodeJS.ArrayBufferView): this;
        setAAD(
            buffer: NodeJS.ArrayBufferView,
            options: {
                plaintextLength: number;
            }
        ): this;
    }
    interface DecipherGCM extends Decipher {
        setAuthTag(buffer: NodeJS.ArrayBufferView): this;
        setAAD(
            buffer: NodeJS.ArrayBufferView,
            options?: {
                plaintextLength: number;
            }
        ): this;
    }
    interface PrivateKeyInput {
        key: string | Buffer;
        format?: KeyFormat | undefined;
        type?: 'pkcs1' | 'pkcs8' | 'sec1' | undefined;
        passphrase?: string | Buffer | undefined;
    }
    interface PublicKeyInput {
        key: string | Buffer;
        format?: KeyFormat | undefined;
        type?: 'pkcs1' | 'spki' | undefined;
    }
    /**
     * Asynchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`.
     *
     * ```js
     * const {
     *   generateKey
     * } = await import('crypto');
     *
     * generateKey('hmac', { length: 64 }, (err, key) => {
     *   if (err) throw err;
     *   console.log(key.export().toString('hex'));  // 46e..........620
     * });
     * ```
     * @since v15.0.0
     * @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`.
     */
    function generateKey(
        type: 'hmac' | 'aes',
        options: {
            length: number;
        },
        callback: (err: Error | null, key: KeyObject) => void
    ): void;
    interface JsonWebKeyInput {
        key: JsonWebKey;
        format: 'jwk';
    }
    /**
     * Creates and returns a new key object containing a private key. If `key` is a
     * string or `Buffer`, `format` is assumed to be `'pem'`; otherwise, `key`must be an object with the properties described above.
     *
     * If the private key is encrypted, a `passphrase` must be specified. The length
     * of the passphrase is limited to 1024 bytes.
     * @since v11.6.0
     */
    function createPrivateKey(key: PrivateKeyInput | string | Buffer | JsonWebKeyInput): KeyObject;
    /**
     * Creates and returns a new key object containing a public key. If `key` is a
     * string or `Buffer`, `format` is assumed to be `'pem'`; if `key` is a `KeyObject`with type `'private'`, the public key is derived from the given private key;
     * otherwise, `key` must be an object with the properties described above.
     *
     * If the format is `'pem'`, the `'key'` may also be an X.509 certificate.
     *
     * Because public keys can be derived from private keys, a private key may be
     * passed instead of a public key. In that case, this function behaves as if {@link createPrivateKey} had been called, except that the type of the
     * returned `KeyObject` will be `'public'` and that the private key cannot be
     * extracted from the returned `KeyObject`. Similarly, if a `KeyObject` with type`'private'` is given, a new `KeyObject` with type `'public'` will be returned
     * and it will be impossible to extract the private key from the returned object.
     * @since v11.6.0
     */
    function createPublicKey(key: PublicKeyInput | string | Buffer | KeyObject | JsonWebKeyInput): KeyObject;
    /**
     * Creates and returns a new key object containing a secret key for symmetric
     * encryption or `Hmac`.
     * @since v11.6.0
     * @param encoding The string encoding when `key` is a string.
     */
    function createSecretKey(key: NodeJS.ArrayBufferView): KeyObject;
    function createSecretKey(key: string, encoding: BufferEncoding): KeyObject;
    /**
     * Creates and returns a `Sign` object that uses the given `algorithm`. Use {@link getHashes} to obtain the names of the available digest algorithms.
     * Optional `options` argument controls the `stream.Writable` behavior.
     *
     * In some cases, a `Sign` instance can be created using the name of a signature
     * algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use
     * the corresponding digest algorithm. This does not work for all signature
     * algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest
     * algorithm names.
     * @since v0.1.92
     * @param options `stream.Writable` options
     */
    function createSign(algorithm: string, options?: stream.WritableOptions): Sign;
    type DSAEncoding = 'der' | 'ieee-p1363';
    interface SigningOptions {
        /**
         * @See crypto.constants.RSA_PKCS1_PADDING
         */
        padding?: number | undefined;
        saltLength?: number | undefined;
        dsaEncoding?: DSAEncoding | undefined;
    }
    interface SignPrivateKeyInput extends PrivateKeyInput, SigningOptions {}
    interface SignKeyObjectInput extends SigningOptions {
        key: KeyObject;
    }
    interface VerifyPublicKeyInput extends PublicKeyInput, SigningOptions {}
    interface VerifyKeyObjectInput extends SigningOptions {
        key: KeyObject;
    }
    type KeyLike = string | Buffer | KeyObject;
    /**
     * The `Sign` class is a utility for generating signatures. It can be used in one
     * of two ways:
     *
     * * As a writable `stream`, where data to be signed is written and the `sign.sign()` method is used to generate and return the signature, or
     * * Using the `sign.update()` and `sign.sign()` methods to produce the
     * signature.
     *
     * The {@link createSign} method is used to create `Sign` instances. The
     * argument is the string name of the hash function to use. `Sign` objects are not
     * to be created directly using the `new` keyword.
     *
     * Example: Using `Sign` and `Verify` objects as streams:
     *
     * ```js
     * const {
     *   generateKeyPairSync,
     *   createSign,
     *   createVerify
     * } = await import('crypto');
     *
     * const { privateKey, publicKey } = generateKeyPairSync('ec', {
     *   namedCurve: 'sect239k1'
     * });
     *
     * const sign = createSign('SHA256');
     * sign.write('some data to sign');
     * sign.end();
     * const signature = sign.sign(privateKey, 'hex');
     *
     * const verify = createVerify('SHA256');
     * verify.write('some data to sign');
     * verify.end();
     * console.log(verify.verify(publicKey, signature, 'hex'));
     * // Prints: true
     * ```
     *
     * Example: Using the `sign.update()` and `verify.update()` methods:
     *
     * ```js
     * const {
     *   generateKeyPairSync,
     *   createSign,
     *   createVerify
     * } = await import('crypto');
     *
     * const { privateKey, publicKey } = generateKeyPairSync('rsa', {
     *   modulusLength: 2048,
     * });
     *
     * const sign = createSign('SHA256');
     * sign.update('some data to sign');
     * sign.end();
     * const signature = sign.sign(privateKey);
     *
     * const verify = createVerify('SHA256');
     * verify.update('some data to sign');
     * verify.end();
     * console.log(verify.verify(publicKey, signature));
     * // Prints: true
     * ```
     * @since v0.1.92
     */
    class Sign extends stream.Writable {
        private constructor();
        /**
         * Updates the `Sign` content with the given `data`, the encoding of which
         * is given in `inputEncoding`.
         * If `encoding` is not provided, and the `data` is a string, an
         * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
         *
         * This can be called many times with new data as it is streamed.
         * @since v0.1.92
         * @param inputEncoding The `encoding` of the `data` string.
         */
        update(data: BinaryLike): this;
        update(data: string, inputEncoding: Encoding): this;
        /**
         * Calculates the signature on all the data passed through using either `sign.update()` or `sign.write()`.
         *
         * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
         * object, the following additional properties can be passed:
         *
         * If `outputEncoding` is provided a string is returned; otherwise a `Buffer` is returned.
         *
         * The `Sign` object can not be again used after `sign.sign()` method has been
         * called. Multiple calls to `sign.sign()` will result in an error being thrown.
         * @since v0.1.92
         */
        sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer;
        sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput, outputFormat: BinaryToTextEncoding): string;
    }
    /**
     * Creates and returns a `Verify` object that uses the given algorithm.
     * Use {@link getHashes} to obtain an array of names of the available
     * signing algorithms. Optional `options` argument controls the`stream.Writable` behavior.
     *
     * In some cases, a `Verify` instance can be created using the name of a signature
     * algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use
     * the corresponding digest algorithm. This does not work for all signature
     * algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest
     * algorithm names.
     * @since v0.1.92
     * @param options `stream.Writable` options
     */
    function createVerify(algorithm: string, options?: stream.WritableOptions): Verify;
    /**
     * The `Verify` class is a utility for verifying signatures. It can be used in one
     * of two ways:
     *
     * * As a writable `stream` where written data is used to validate against the
     * supplied signature, or
     * * Using the `verify.update()` and `verify.verify()` methods to verify
     * the signature.
     *
     * The {@link createVerify} method is used to create `Verify` instances.`Verify` objects are not to be created directly using the `new` keyword.
     *
     * See `Sign` for examples.
     * @since v0.1.92
     */
    class Verify extends stream.Writable {
        private constructor();
        /**
         * Updates the `Verify` content with the given `data`, the encoding of which
         * is given in `inputEncoding`.
         * If `inputEncoding` is not provided, and the `data` is a string, an
         * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
         *
         * This can be called many times with new data as it is streamed.
         * @since v0.1.92
         * @param inputEncoding The `encoding` of the `data` string.
         */
        update(data: BinaryLike): Verify;
        update(data: string, inputEncoding: Encoding): Verify;
        /**
         * Verifies the provided data using the given `object` and `signature`.
         *
         * If `object` is not a `KeyObject`, this function behaves as if`object` had been passed to {@link createPublicKey}. If it is an
         * object, the following additional properties can be passed:
         *
         * The `signature` argument is the previously calculated signature for the data, in
         * the `signatureEncoding`.
         * If a `signatureEncoding` is specified, the `signature` is expected to be a
         * string; otherwise `signature` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
         *
         * The `verify` object can not be used again after `verify.verify()` has been
         * called. Multiple calls to `verify.verify()` will result in an error being
         * thrown.
         *
         * Because public keys can be derived from private keys, a private key may
         * be passed instead of a public key.
         * @since v0.1.92
         */
        verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: NodeJS.ArrayBufferView): boolean;
        verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: string, signature_format?: BinaryToTextEncoding): boolean;
    }
    /**
     * Creates a `DiffieHellman` key exchange object using the supplied `prime` and an
     * optional specific `generator`.
     *
     * The `generator` argument can be a number, string, or `Buffer`. If`generator` is not specified, the value `2` is used.
     *
     * If `primeEncoding` is specified, `prime` is expected to be a string; otherwise
     * a `Buffer`, `TypedArray`, or `DataView` is expected.
     *
     * If `generatorEncoding` is specified, `generator` is expected to be a string;
     * otherwise a number, `Buffer`, `TypedArray`, or `DataView` is expected.
     * @since v0.11.12
     * @param primeEncoding The `encoding` of the `prime` string.
     * @param [generator=2]
     * @param generatorEncoding The `encoding` of the `generator` string.
     */
    function createDiffieHellman(primeLength: number, generator?: number | NodeJS.ArrayBufferView): DiffieHellman;
    function createDiffieHellman(prime: NodeJS.ArrayBufferView): DiffieHellman;
    function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding): DiffieHellman;
    function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator: number | NodeJS.ArrayBufferView): DiffieHellman;
    function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator: string, generatorEncoding: BinaryToTextEncoding): DiffieHellman;
    /**
     * The `DiffieHellman` class is a utility for creating Diffie-Hellman key
     * exchanges.
     *
     * Instances of the `DiffieHellman` class can be created using the {@link createDiffieHellman} function.
     *
     * ```js
     * import assert from 'assert';
     *
     * const {
     *   createDiffieHellman
     * } = await import('crypto');
     *
     * // Generate Alice's keys...
     * const alice = createDiffieHellman(2048);
     * const aliceKey = alice.generateKeys();
     *
     * // Generate Bob's keys...
     * const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
     * const bobKey = bob.generateKeys();
     *
     * // Exchange and generate the secret...
     * const aliceSecret = alice.computeSecret(bobKey);
     * const bobSecret = bob.computeSecret(aliceKey);
     *
     * // OK
     * assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
     * ```
     * @since v0.5.0
     */
    class DiffieHellman {
        private constructor();
        /**
         * Generates private and public Diffie-Hellman key values, and returns
         * the public key in the specified `encoding`. This key should be
         * transferred to the other party.
         * If `encoding` is provided a string is returned; otherwise a `Buffer` is returned.
         * @since v0.5.0
         * @param encoding The `encoding` of the return value.
         */
        generateKeys(): Buffer;
        generateKeys(encoding: BinaryToTextEncoding): string;
        /**
         * Computes the shared secret using `otherPublicKey` as the other
         * party's public key and returns the computed shared secret. The supplied
         * key is interpreted using the specified `inputEncoding`, and secret is
         * encoded using specified `outputEncoding`.
         * If the `inputEncoding` is not
         * provided, `otherPublicKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
         *
         * If `outputEncoding` is given a string is returned; otherwise, a `Buffer` is returned.
         * @since v0.5.0
         * @param inputEncoding The `encoding` of an `otherPublicKey` string.
         * @param outputEncoding The `encoding` of the return value.
         */
        computeSecret(otherPublicKey: NodeJS.ArrayBufferView): Buffer;
        computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding): Buffer;
        computeSecret(otherPublicKey: NodeJS.ArrayBufferView, outputEncoding: BinaryToTextEncoding): string;
        computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string;
        /**
         * Returns the Diffie-Hellman prime in the specified `encoding`.
         * If `encoding` is provided a string is
         * returned; otherwise a `Buffer` is returned.
         * @since v0.5.0
         * @param encoding The `encoding` of the return value.
         */
        getPrime(): Buffer;
        getPrime(encoding: BinaryToTextEncoding): string;
        /**
         * Returns the Diffie-Hellman generator in the specified `encoding`.
         * If `encoding` is provided a string is
         * returned; otherwise a `Buffer` is returned.
         * @since v0.5.0
         * @param encoding The `encoding` of the return value.
         */
        getGenerator(): Buffer;
        getGenerator(encoding: BinaryToTextEncoding): string;
        /**
         * Returns the Diffie-Hellman public key in the specified `encoding`.
         * If `encoding` is provided a
         * string is returned; otherwise a `Buffer` is returned.
         * @since v0.5.0
         * @param encoding The `encoding` of the return value.
         */
        getPublicKey(): Buffer;
        getPublicKey(encoding: BinaryToTextEncoding): string;
        /**
         * Returns the Diffie-Hellman private key in the specified `encoding`.
         * If `encoding` is provided a
         * string is returned; otherwise a `Buffer` is returned.
         * @since v0.5.0
         * @param encoding The `encoding` of the return value.
         */
        getPrivateKey(): Buffer;
        getPrivateKey(encoding: BinaryToTextEncoding): string;
        /**
         * Sets the Diffie-Hellman public key. If the `encoding` argument is provided,`publicKey` is expected
         * to be a string. If no `encoding` is provided, `publicKey` is expected
         * to be a `Buffer`, `TypedArray`, or `DataView`.
         * @since v0.5.0
         * @param encoding The `encoding` of the `publicKey` string.
         */
        setPublicKey(publicKey: NodeJS.ArrayBufferView): void;
        setPublicKey(publicKey: string, encoding: BufferEncoding): void;
        /**
         * Sets the Diffie-Hellman private key. If the `encoding` argument is provided,`privateKey` is expected
         * to be a string. If no `encoding` is provided, `privateKey` is expected
         * to be a `Buffer`, `TypedArray`, or `DataView`.
         * @since v0.5.0
         * @param encoding The `encoding` of the `privateKey` string.
         */
        setPrivateKey(privateKey: NodeJS.ArrayBufferView): void;
        setPrivateKey(privateKey: string, encoding: BufferEncoding): void;
        /**
         * A bit field containing any warnings and/or errors resulting from a check
         * performed during initialization of the `DiffieHellman` object.
         *
         * The following values are valid for this property (as defined in `constants`module):
         *
         * * `DH_CHECK_P_NOT_SAFE_PRIME`
         * * `DH_CHECK_P_NOT_PRIME`
         * * `DH_UNABLE_TO_CHECK_GENERATOR`
         * * `DH_NOT_SUITABLE_GENERATOR`
         * @since v0.11.12
         */
        verifyError: number;
    }
    /**
     * Creates a predefined `DiffieHellmanGroup` key exchange object. The
     * supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in[RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt), but see `Caveats`) and `'modp14'`, `'modp15'`,`'modp16'`, `'modp17'`,
     * `'modp18'` (defined in [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt)). The
     * returned object mimics the interface of objects created by {@link createDiffieHellman}, but will not allow changing
     * the keys (with `diffieHellman.setPublicKey()`, for example). The
     * advantage of using this method is that the parties do not have to
     * generate nor exchange a group modulus beforehand, saving both processor
     * and communication time.
     *
     * Example (obtaining a shared secret):
     *
     * ```js
     * const {
     *   getDiffieHellman
     * } = await import('crypto');
     * const alice = getDiffieHellman('modp14');
     * const bob = getDiffieHellman('modp14');
     *
     * alice.generateKeys();
     * bob.generateKeys();
     *
     * const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
     * const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
     *
     * // aliceSecret and bobSecret should be the same
     * console.log(aliceSecret === bobSecret);
     * ```
     * @since v0.7.5
     */
    function getDiffieHellman(groupName: string): DiffieHellman;
    /**
     * Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
     * implementation. A selected HMAC digest algorithm specified by `digest` is
     * applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`.
     *
     * The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an error occurs while deriving the key, `err` will be set;
     * otherwise `err` will be `null`. By default, the successfully generated`derivedKey` will be passed to the callback as a `Buffer`. An error will be
     * thrown if any of the input arguments specify invalid values or types.
     *
     * If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated,
     * please specify a `digest` explicitly.
     *
     * The `iterations` argument must be a number set as high as possible. The
     * higher the number of iterations, the more secure the derived key will be,
     * but will take a longer amount of time to complete.
     *
     * The `salt` should be as unique as possible. It is recommended that a salt is
     * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
     *
     * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
     *
     * ```js
     * const {
     *   pbkdf2
     * } = await import('crypto');
     *
     * pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
     *   if (err) throw err;
     *   console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
     * });
     * ```
     *
     * The `crypto.DEFAULT_ENCODING` property can be used to change the way the`derivedKey` is passed to the callback. This property, however, has been
     * deprecated and use should be avoided.
     *
     * ```js
     * import crypto from 'crypto';
     * crypto.DEFAULT_ENCODING = 'hex';
     * crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => {
     *   if (err) throw err;
     *   console.log(derivedKey);  // '3745e48...aa39b34'
     * });
     * ```
     *
     * An array of supported digest functions can be retrieved using {@link getHashes}.
     *
     * This API uses libuv's threadpool, which can have surprising and
     * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
     * @since v0.5.5
     */
    function pbkdf2(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string, callback: (err: Error | null, derivedKey: Buffer) => void): void;
    /**
     * Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
     * implementation. A selected HMAC digest algorithm specified by `digest` is
     * applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`.
     *
     * If an error occurs an `Error` will be thrown, otherwise the derived key will be
     * returned as a `Buffer`.
     *
     * If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated,
     * please specify a `digest` explicitly.
     *
     * The `iterations` argument must be a number set as high as possible. The
     * higher the number of iterations, the more secure the derived key will be,
     * but will take a longer amount of time to complete.
     *
     * The `salt` should be as unique as possible. It is recommended that a salt is
     * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
     *
     * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
     *
     * ```js
     * const {
     *   pbkdf2Sync
     * } = await import('crypto');
     *
     * const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
     * console.log(key.toString('hex'));  // '3745e48...08d59ae'
     * ```
     *
     * The `crypto.DEFAULT_ENCODING` property may be used to change the way the`derivedKey` is returned. This property, however, is deprecated and use
     * should be avoided.
     *
     * ```js
     * import crypto from 'crypto';
     * crypto.DEFAULT_ENCODING = 'hex';
     * const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
     * console.log(key);  // '3745e48...aa39b34'
     * ```
     *
     * An array of supported digest functions can be retrieved using {@link getHashes}.
     * @since v0.9.3
     */
    function pbkdf2Sync(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string): Buffer;
    /**
     * Generates cryptographically strong pseudorandom data. The `size` argument
     * is a number indicating the number of bytes to generate.
     *
     * If a `callback` function is provided, the bytes are generated asynchronously
     * and the `callback` function is invoked with two arguments: `err` and `buf`.
     * If an error occurs, `err` will be an `Error` object; otherwise it is `null`. The`buf` argument is a `Buffer` containing the generated bytes.
     *
     * ```js
     * // Asynchronous
     * const {
     *   randomBytes
     * } = await import('crypto');
     *
     * randomBytes(256, (err, buf) => {
     *   if (err) throw err;
     *   console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
     * });
     * ```
     *
     * If the `callback` function is not provided, the random bytes are generated
     * synchronously and returned as a `Buffer`. An error will be thrown if
     * there is a problem generating the bytes.
     *
     * ```js
     * // Synchronous
     * const {
     *   randomBytes
     * } = await import('crypto');
     *
     * const buf = randomBytes(256);
     * console.log(
     *   `${buf.length} bytes of random data: ${buf.toString('hex')}`);
     * ```
     *
     * The `crypto.randomBytes()` method will not complete until there is
     * sufficient entropy available.
     * This should normally never take longer than a few milliseconds. The only time
     * when generating the random bytes may conceivably block for a longer period of
     * time is right after boot, when the whole system is still low on entropy.
     *
     * This API uses libuv's threadpool, which can have surprising and
     * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
     *
     * The asynchronous version of `crypto.randomBytes()` is carried out in a single
     * threadpool request. To minimize threadpool task length variation, partition
     * large `randomBytes` requests when doing so as part of fulfilling a client
     * request.
     * @since v0.5.8
     * @param size The number of bytes to generate. The `size` must not be larger than `2**31 - 1`.
     * @return if the `callback` function is not provided.
     */
    function randomBytes(size: number): Buffer;
    function randomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void;
    function pseudoRandomBytes(size: number): Buffer;
    function pseudoRandomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void;
    /**
     * Return a random integer `n` such that `min <= n < max`.  This
     * implementation avoids [modulo bias](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#Modulo_bias).
     *
     * The range (`max - min`) must be less than 248. `min` and `max` must
     * be [safe integers](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isSafeInteger).
     *
     * If the `callback` function is not provided, the random integer is
     * generated synchronously.
     *
     * ```js
     * // Asynchronous
     * const {
     *   randomInt
     * } = await import('crypto');
     *
     * randomInt(3, (err, n) => {
     *   if (err) throw err;
     *   console.log(`Random number chosen from (0, 1, 2): ${n}`);
     * });
     * ```
     *
     * ```js
     * // Synchronous
     * const {
     *   randomInt
     * } = await import('crypto');
     *
     * const n = randomInt(3);
     * console.log(`Random number chosen from (0, 1, 2): ${n}`);
     * ```
     *
     * ```js
     * // With `min` argument
     * const {
     *   randomInt
     * } = await import('crypto');
     *
     * const n = randomInt(1, 7);
     * console.log(`The dice rolled: ${n}`);
     * ```
     * @since v14.10.0, v12.19.0
     * @param [min=0] Start of random range (inclusive).
     * @param max End of random range (exclusive).
     * @param callback `function(err, n) {}`.
     */
    function randomInt(max: number): number;
    function randomInt(min: number, max: number): number;
    function randomInt(max: number, callback: (err: Error | null, value: number) => void): void;
    function randomInt(min: number, max: number, callback: (err: Error | null, value: number) => void): void;
    /**
     * Synchronous version of {@link randomFill}.
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const { randomFillSync } = await import('crypto');
     *
     * const buf = Buffer.alloc(10);
     * console.log(randomFillSync(buf).toString('hex'));
     *
     * randomFillSync(buf, 5);
     * console.log(buf.toString('hex'));
     *
     * // The above is equivalent to the following:
     * randomFillSync(buf, 5, 5);
     * console.log(buf.toString('hex'));
     * ```
     *
     * Any `ArrayBuffer`, `TypedArray` or `DataView` instance may be passed as`buffer`.
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const { randomFillSync } = await import('crypto');
     *
     * const a = new Uint32Array(10);
     * console.log(Buffer.from(randomFillSync(a).buffer,
     *                         a.byteOffset, a.byteLength).toString('hex'));
     *
     * const b = new DataView(new ArrayBuffer(10));
     * console.log(Buffer.from(randomFillSync(b).buffer,
     *                         b.byteOffset, b.byteLength).toString('hex'));
     *
     * const c = new ArrayBuffer(10);
     * console.log(Buffer.from(randomFillSync(c)).toString('hex'));
     * ```
     * @since v7.10.0, v6.13.0
     * @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`.
     * @param [offset=0]
     * @param [size=buffer.length - offset]
     * @return The object passed as `buffer` argument.
     */
    function randomFillSync<T extends NodeJS.ArrayBufferView>(buffer: T, offset?: number, size?: number): T;
    /**
     * This function is similar to {@link randomBytes} but requires the first
     * argument to be a `Buffer` that will be filled. It also
     * requires that a callback is passed in.
     *
     * If the `callback` function is not provided, an error will be thrown.
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const { randomFill } = await import('crypto');
     *
     * const buf = Buffer.alloc(10);
     * randomFill(buf, (err, buf) => {
     *   if (err) throw err;
     *   console.log(buf.toString('hex'));
     * });
     *
     * randomFill(buf, 5, (err, buf) => {
     *   if (err) throw err;
     *   console.log(buf.toString('hex'));
     * });
     *
     * // The above is equivalent to the following:
     * randomFill(buf, 5, 5, (err, buf) => {
     *   if (err) throw err;
     *   console.log(buf.toString('hex'));
     * });
     * ```
     *
     * Any `ArrayBuffer`, `TypedArray`, or `DataView` instance may be passed as`buffer`.
     *
     * While this includes instances of `Float32Array` and `Float64Array`, this
     * function should not be used to generate random floating-point numbers. The
     * result may contain `+Infinity`, `-Infinity`, and `NaN`, and even if the array
     * contains finite numbers only, they are not drawn from a uniform random
     * distribution and have no meaningful lower or upper bounds.
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const { randomFill } = await import('crypto');
     *
     * const a = new Uint32Array(10);
     * randomFill(a, (err, buf) => {
     *   if (err) throw err;
     *   console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
     *     .toString('hex'));
     * });
     *
     * const b = new DataView(new ArrayBuffer(10));
     * randomFill(b, (err, buf) => {
     *   if (err) throw err;
     *   console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
     *     .toString('hex'));
     * });
     *
     * const c = new ArrayBuffer(10);
     * randomFill(c, (err, buf) => {
     *   if (err) throw err;
     *   console.log(Buffer.from(buf).toString('hex'));
     * });
     * ```
     *
     * This API uses libuv's threadpool, which can have surprising and
     * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
     *
     * The asynchronous version of `crypto.randomFill()` is carried out in a single
     * threadpool request. To minimize threadpool task length variation, partition
     * large `randomFill` requests when doing so as part of fulfilling a client
     * request.
     * @since v7.10.0, v6.13.0
     * @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`.
     * @param [offset=0]
     * @param [size=buffer.length - offset]
     * @param callback `function(err, buf) {}`.
     */
    function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, callback: (err: Error | null, buf: T) => void): void;
    function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, offset: number, callback: (err: Error | null, buf: T) => void): void;
    function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, offset: number, size: number, callback: (err: Error | null, buf: T) => void): void;
    interface ScryptOptions {
        cost?: number | undefined;
        blockSize?: number | undefined;
        parallelization?: number | undefined;
        N?: number | undefined;
        r?: number | undefined;
        p?: number | undefined;
        maxmem?: number | undefined;
    }
    /**
     * Provides an asynchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based
     * key derivation function that is designed to be expensive computationally and
     * memory-wise in order to make brute-force attacks unrewarding.
     *
     * The `salt` should be as unique as possible. It is recommended that a salt is
     * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
     *
     * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
     *
     * The `callback` function is called with two arguments: `err` and `derivedKey`.`err` is an exception object when key derivation fails, otherwise `err` is`null`. `derivedKey` is passed to the
     * callback as a `Buffer`.
     *
     * An exception is thrown when any of the input arguments specify invalid values
     * or types.
     *
     * ```js
     * const {
     *   scrypt
     * } = await import('crypto');
     *
     * // Using the factory defaults.
     * scrypt('password', 'salt', 64, (err, derivedKey) => {
     *   if (err) throw err;
     *   console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
     * });
     * // Using a custom N parameter. Must be a power of two.
     * scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => {
     *   if (err) throw err;
     *   console.log(derivedKey.toString('hex'));  // '3745e48...aa39b34'
     * });
     * ```
     * @since v10.5.0
     */
    function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: Buffer) => void): void;
    function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, options: ScryptOptions, callback: (err: Error | null, derivedKey: Buffer) => void): void;
    /**
     * Provides a synchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based
     * key derivation function that is designed to be expensive computationally and
     * memory-wise in order to make brute-force attacks unrewarding.
     *
     * The `salt` should be as unique as possible. It is recommended that a salt is
     * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
     *
     * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
     *
     * An exception is thrown when key derivation fails, otherwise the derived key is
     * returned as a `Buffer`.
     *
     * An exception is thrown when any of the input arguments specify invalid values
     * or types.
     *
     * ```js
     * const {
     *   scryptSync
     * } = await import('crypto');
     * // Using the factory defaults.
     *
     * const key1 = scryptSync('password', 'salt', 64);
     * console.log(key1.toString('hex'));  // '3745e48...08d59ae'
     * // Using a custom N parameter. Must be a power of two.
     * const key2 = scryptSync('password', 'salt', 64, { N: 1024 });
     * console.log(key2.toString('hex'));  // '3745e48...aa39b34'
     * ```
     * @since v10.5.0
     */
    function scryptSync(password: BinaryLike, salt: BinaryLike, keylen: number, options?: ScryptOptions): Buffer;
    interface RsaPublicKey {
        key: KeyLike;
        padding?: number | undefined;
    }
    interface RsaPrivateKey {
        key: KeyLike;
        passphrase?: string | undefined;
        /**
         * @default 'sha1'
         */
        oaepHash?: string | undefined;
        oaepLabel?: NodeJS.TypedArray | undefined;
        padding?: number | undefined;
    }
    /**
     * Encrypts the content of `buffer` with `key` and returns a new `Buffer` with encrypted content. The returned data can be decrypted using
     * the corresponding private key, for example using {@link privateDecrypt}.
     *
     * If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an
     * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`.
     *
     * Because RSA public keys can be derived from private keys, a private key may
     * be passed instead of a public key.
     * @since v0.11.14
     */
    function publicEncrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
    /**
     * Decrypts `buffer` with `key`.`buffer` was previously encrypted using
     * the corresponding private key, for example using {@link privateEncrypt}.
     *
     * If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an
     * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`.
     *
     * Because RSA public keys can be derived from private keys, a private key may
     * be passed instead of a public key.
     * @since v1.1.0
     */
    function publicDecrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
    /**
     * Decrypts `buffer` with `privateKey`. `buffer` was previously encrypted using
     * the corresponding public key, for example using {@link publicEncrypt}.
     *
     * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
     * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`.
     * @since v0.11.14
     */
    function privateDecrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
    /**
     * Encrypts `buffer` with `privateKey`. The returned data can be decrypted using
     * the corresponding public key, for example using {@link publicDecrypt}.
     *
     * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
     * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`.
     * @since v1.1.0
     */
    function privateEncrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
    /**
     * ```js
     * const {
     *   getCiphers
     * } = await import('crypto');
     *
     * console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
     * ```
     * @since v0.9.3
     * @return An array with the names of the supported cipher algorithms.
     */
    function getCiphers(): string[];
    /**
     * ```js
     * const {
     *   getCurves
     * } = await import('crypto');
     *
     * console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
     * ```
     * @since v2.3.0
     * @return An array with the names of the supported elliptic curves.
     */
    function getCurves(): string[];
    /**
     * @since v10.0.0
     * @return `1` if and only if a FIPS compliant crypto provider is currently in use, `0` otherwise. A future semver-major release may change the return type of this API to a {boolean}.
     */
    function getFips(): 1 | 0;
    /**
     * ```js
     * const {
     *   getHashes
     * } = await import('crypto');
     *
     * console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
     * ```
     * @since v0.9.3
     * @return An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`. Hash algorithms are also called "digest" algorithms.
     */
    function getHashes(): string[];
    /**
     * The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)
     * key exchanges.
     *
     * Instances of the `ECDH` class can be created using the {@link createECDH} function.
     *
     * ```js
     * import assert from 'assert';
     *
     * const {
     *   createECDH
     * } = await import('crypto');
     *
     * // Generate Alice's keys...
     * const alice = createECDH('secp521r1');
     * const aliceKey = alice.generateKeys();
     *
     * // Generate Bob's keys...
     * const bob = createECDH('secp521r1');
     * const bobKey = bob.generateKeys();
     *
     * // Exchange and generate the secret...
     * const aliceSecret = alice.computeSecret(bobKey);
     * const bobSecret = bob.computeSecret(aliceKey);
     *
     * assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
     * // OK
     * ```
     * @since v0.11.14
     */
    class ECDH {
        private constructor();
        /**
         * Converts the EC Diffie-Hellman public key specified by `key` and `curve` to the
         * format specified by `format`. The `format` argument specifies point encoding
         * and can be `'compressed'`, `'uncompressed'` or `'hybrid'`. The supplied key is
         * interpreted using the specified `inputEncoding`, and the returned key is encoded
         * using the specified `outputEncoding`.
         *
         * Use {@link getCurves} to obtain a list of available curve names.
         * On recent OpenSSL releases, `openssl ecparam -list_curves` will also display
         * the name and description of each available elliptic curve.
         *
         * If `format` is not specified the point will be returned in `'uncompressed'`format.
         *
         * If the `inputEncoding` is not provided, `key` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
         *
         * Example (uncompressing a key):
         *
         * ```js
         * const {
         *   createECDH,
         *   ECDH
         * } = await import('crypto');
         *
         * const ecdh = createECDH('secp256k1');
         * ecdh.generateKeys();
         *
         * const compressedKey = ecdh.getPublicKey('hex', 'compressed');
         *
         * const uncompressedKey = ECDH.convertKey(compressedKey,
         *                                         'secp256k1',
         *                                         'hex',
         *                                         'hex',
         *                                         'uncompressed');
         *
         * // The converted key and the uncompressed public key should be the same
         * console.log(uncompressedKey === ecdh.getPublicKey('hex'));
         * ```
         * @since v10.0.0
         * @param inputEncoding The `encoding` of the `key` string.
         * @param outputEncoding The `encoding` of the return value.
         * @param [format='uncompressed']
         */
        static convertKey(
            key: BinaryLike,
            curve: string,
            inputEncoding?: BinaryToTextEncoding,
            outputEncoding?: 'latin1' | 'hex' | 'base64',
            format?: 'uncompressed' | 'compressed' | 'hybrid'
        ): Buffer | string;
        /**
         * Generates private and public EC Diffie-Hellman key values, and returns
         * the public key in the specified `format` and `encoding`. This key should be
         * transferred to the other party.
         *
         * The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified, the point will be returned in`'uncompressed'` format.
         *
         * If `encoding` is provided a string is returned; otherwise a `Buffer` is returned.
         * @since v0.11.14
         * @param encoding The `encoding` of the return value.
         * @param [format='uncompressed']
         */
        generateKeys(): Buffer;
        generateKeys(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string;
        /**
         * Computes the shared secret using `otherPublicKey` as the other
         * party's public key and returns the computed shared secret. The supplied
         * key is interpreted using specified `inputEncoding`, and the returned secret
         * is encoded using the specified `outputEncoding`.
         * If the `inputEncoding` is not
         * provided, `otherPublicKey` is expected to be a `Buffer`, `TypedArray`, or`DataView`.
         *
         * If `outputEncoding` is given a string will be returned; otherwise a `Buffer` is returned.
         *
         * `ecdh.computeSecret` will throw an`ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY` error when `otherPublicKey`lies outside of the elliptic curve. Since `otherPublicKey` is
         * usually supplied from a remote user over an insecure network,
         * be sure to handle this exception accordingly.
         * @since v0.11.14
         * @param inputEncoding The `encoding` of the `otherPublicKey` string.
         * @param outputEncoding The `encoding` of the return value.
         */
        computeSecret(otherPublicKey: NodeJS.ArrayBufferView): Buffer;
        computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding): Buffer;
        computeSecret(otherPublicKey: NodeJS.ArrayBufferView, outputEncoding: BinaryToTextEncoding): string;
        computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string;
        /**
         * If `encoding` is specified, a string is returned; otherwise a `Buffer` is
         * returned.
         * @since v0.11.14
         * @param encoding The `encoding` of the return value.
         * @return The EC Diffie-Hellman in the specified `encoding`.
         */
        getPrivateKey(): Buffer;
        getPrivateKey(encoding: BinaryToTextEncoding): string;
        /**
         * The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified the point will be returned in`'uncompressed'` format.
         *
         * If `encoding` is specified, a string is returned; otherwise a `Buffer` is
         * returned.
         * @since v0.11.14
         * @param encoding The `encoding` of the return value.
         * @param [format='uncompressed']
         * @return The EC Diffie-Hellman public key in the specified `encoding` and `format`.
         */
        getPublicKey(): Buffer;
        getPublicKey(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string;
        /**
         * Sets the EC Diffie-Hellman private key.
         * If `encoding` is provided, `privateKey` is expected
         * to be a string; otherwise `privateKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
         *
         * If `privateKey` is not valid for the curve specified when the `ECDH` object was
         * created, an error is thrown. Upon setting the private key, the associated
         * public point (key) is also generated and set in the `ECDH` object.
         * @since v0.11.14
         * @param encoding The `encoding` of the `privateKey` string.
         */
        setPrivateKey(privateKey: NodeJS.ArrayBufferView): void;
        setPrivateKey(privateKey: string, encoding: BinaryToTextEncoding): void;
    }
    /**
     * Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a
     * predefined curve specified by the `curveName` string. Use {@link getCurves} to obtain a list of available curve names. On recent
     * OpenSSL releases, `openssl ecparam -list_curves` will also display the name
     * and description of each available elliptic curve.
     * @since v0.11.14
     */
    function createECDH(curveName: string): ECDH;
    /**
     * This function is based on a constant-time algorithm.
     * Returns true if `a` is equal to `b`, without leaking timing information that
     * would allow an attacker to guess one of the values. This is suitable for
     * comparing HMAC digests or secret values like authentication cookies or[capability urls](https://www.w3.org/TR/capability-urls/).
     *
     * `a` and `b` must both be `Buffer`s, `TypedArray`s, or `DataView`s, and they
     * must have the same byte length.
     *
     * If at least one of `a` and `b` is a `TypedArray` with more than one byte per
     * entry, such as `Uint16Array`, the result will be computed using the platform
     * byte order.
     *
     * Use of `crypto.timingSafeEqual` does not guarantee that the _surrounding_ code
     * is timing-safe. Care should be taken to ensure that the surrounding code does
     * not introduce timing vulnerabilities.
     * @since v6.6.0
     */
    function timingSafeEqual(a: NodeJS.ArrayBufferView, b: NodeJS.ArrayBufferView): boolean;
    /** @deprecated since v10.0.0 */
    const DEFAULT_ENCODING: BufferEncoding;
    type KeyType = 'rsa' | 'dsa' | 'ec' | 'ed25519' | 'ed448' | 'x25519' | 'x448';
    type KeyFormat = 'pem' | 'der';
    interface BasePrivateKeyEncodingOptions<T extends KeyFormat> {
        format: T;
        cipher?: string | undefined;
        passphrase?: string | undefined;
    }
    interface KeyPairKeyObjectResult {
        publicKey: KeyObject;
        privateKey: KeyObject;
    }
    interface ED25519KeyPairKeyObjectOptions {}
    interface ED448KeyPairKeyObjectOptions {}
    interface X25519KeyPairKeyObjectOptions {}
    interface X448KeyPairKeyObjectOptions {}
    interface ECKeyPairKeyObjectOptions {
        /**
         * Name of the curve to use.
         */
        namedCurve: string;
    }
    interface RSAKeyPairKeyObjectOptions {
        /**
         * Key size in bits
         */
        modulusLength: number;
        /**
         * @default 0x10001
         */
        publicExponent?: number | undefined;
    }
    interface DSAKeyPairKeyObjectOptions {
        /**
         * Key size in bits
         */
        modulusLength: number;
        /**
         * Size of q in bits
         */
        divisorLength: number;
    }
    interface RSAKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        /**
         * Key size in bits
         */
        modulusLength: number;
        /**
         * @default 0x10001
         */
        publicExponent?: number | undefined;
        publicKeyEncoding: {
            type: 'pkcs1' | 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'pkcs1' | 'pkcs8';
        };
    }
    interface DSAKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        /**
         * Key size in bits
         */
        modulusLength: number;
        /**
         * Size of q in bits
         */
        divisorLength: number;
        publicKeyEncoding: {
            type: 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'pkcs8';
        };
    }
    interface ECKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        /**
         * Name of the curve to use.
         */
        namedCurve: string;
        publicKeyEncoding: {
            type: 'pkcs1' | 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'sec1' | 'pkcs8';
        };
    }
    interface ED25519KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        publicKeyEncoding: {
            type: 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'pkcs8';
        };
    }
    interface ED448KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        publicKeyEncoding: {
            type: 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'pkcs8';
        };
    }
    interface X25519KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        publicKeyEncoding: {
            type: 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'pkcs8';
        };
    }
    interface X448KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
        publicKeyEncoding: {
            type: 'spki';
            format: PubF;
        };
        privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
            type: 'pkcs8';
        };
    }
    interface KeyPairSyncResult<T1 extends string | Buffer, T2 extends string | Buffer> {
        publicKey: T1;
        privateKey: T2;
    }
    /**
     * Generates a new asymmetric key pair of the given `type`. RSA, DSA, EC, Ed25519,
     * Ed448, X25519, X448, and DH are currently supported.
     *
     * If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function
     * behaves as if `keyObject.export()` had been called on its result. Otherwise,
     * the respective part of the key is returned as a `KeyObject`.
     *
     * When encoding public keys, it is recommended to use `'spki'`. When encoding
     * private keys, it is recommended to use `'pkcs8'` with a strong passphrase,
     * and to keep the passphrase confidential.
     *
     * ```js
     * const {
     *   generateKeyPairSync
     * } = await import('crypto');
     *
     * const {
     *   publicKey,
     *   privateKey,
     * } = generateKeyPairSync('rsa', {
     *   modulusLength: 4096,
     *   publicKeyEncoding: {
     *     type: 'spki',
     *     format: 'pem'
     *   },
     *   privateKeyEncoding: {
     *     type: 'pkcs8',
     *     format: 'pem',
     *     cipher: 'aes-256-cbc',
     *     passphrase: 'top secret'
     *   }
     * });
     * ```
     *
     * The return value `{ publicKey, privateKey }` represents the generated key pair.
     * When PEM encoding was selected, the respective key will be a string, otherwise
     * it will be a buffer containing the data encoded as DER.
     * @since v10.12.0
     * @param type Must be `'rsa'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`.
     */
    function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'rsa', options: RSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'dsa', options: DSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'ec', options: ECKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
    function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
    function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
    function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
    function generateKeyPairSync(type: 'x448', options?: X448KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
    /**
     * Generates a new asymmetric key pair of the given `type`. RSA, DSA, EC, Ed25519,
     * Ed448, X25519, X448, and DH are currently supported.
     *
     * If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function
     * behaves as if `keyObject.export()` had been called on its result. Otherwise,
     * the respective part of the key is returned as a `KeyObject`.
     *
     * It is recommended to encode public keys as `'spki'` and private keys as`'pkcs8'` with encryption for long-term storage:
     *
     * ```js
     * const {
     *   generateKeyPair
     * } = await import('crypto');
     *
     * generateKeyPair('rsa', {
     *   modulusLength: 4096,
     *   publicKeyEncoding: {
     *     type: 'spki',
     *     format: 'pem'
     *   },
     *   privateKeyEncoding: {
     *     type: 'pkcs8',
     *     format: 'pem',
     *     cipher: 'aes-256-cbc',
     *     passphrase: 'top secret'
     *   }
     * }, (err, publicKey, privateKey) => {
     *   // Handle errors and use the generated key pair.
     * });
     * ```
     *
     * On completion, `callback` will be called with `err` set to `undefined` and`publicKey` / `privateKey` representing the generated key pair.
     *
     * If this method is invoked as its `util.promisify()` ed version, it returns
     * a `Promise` for an `Object` with `publicKey` and `privateKey` properties.
     * @since v10.12.0
     * @param type Must be `'rsa'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`.
     */
    function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'rsa', options: RSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'dsa', options: DSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'ec', options: ECKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'ed25519', options: ED25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'ed448', options: ED448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'x25519', options: X25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
    function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
    function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
    function generateKeyPair(type: 'x448', options: X448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
    namespace generateKeyPair {
        function __promisify__(
            type: 'rsa',
            options: RSAKeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'rsa',
            options: RSAKeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'rsa',
            options: RSAKeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'rsa',
            options: RSAKeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'rsa', options: RSAKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
        function __promisify__(
            type: 'dsa',
            options: DSAKeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'dsa',
            options: DSAKeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'dsa',
            options: DSAKeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'dsa',
            options: DSAKeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'dsa', options: DSAKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
        function __promisify__(
            type: 'ec',
            options: ECKeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'ec',
            options: ECKeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'ec',
            options: ECKeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'ec',
            options: ECKeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'ec', options: ECKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
        function __promisify__(
            type: 'ed25519',
            options: ED25519KeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'ed25519',
            options: ED25519KeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'ed25519',
            options: ED25519KeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'ed25519',
            options: ED25519KeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
        function __promisify__(
            type: 'ed448',
            options: ED448KeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'ed448',
            options: ED448KeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'ed448',
            options: ED448KeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'ed448',
            options: ED448KeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
        function __promisify__(
            type: 'x25519',
            options: X25519KeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'x25519',
            options: X25519KeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'x25519',
            options: X25519KeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'x25519',
            options: X25519KeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
        function __promisify__(
            type: 'x448',
            options: X448KeyPairOptions<'pem', 'pem'>
        ): Promise<{
            publicKey: string;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'x448',
            options: X448KeyPairOptions<'pem', 'der'>
        ): Promise<{
            publicKey: string;
            privateKey: Buffer;
        }>;
        function __promisify__(
            type: 'x448',
            options: X448KeyPairOptions<'der', 'pem'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: string;
        }>;
        function __promisify__(
            type: 'x448',
            options: X448KeyPairOptions<'der', 'der'>
        ): Promise<{
            publicKey: Buffer;
            privateKey: Buffer;
        }>;
        function __promisify__(type: 'x448', options?: X448KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
    }
    /**
     * Calculates and returns the signature for `data` using the given private key and
     * algorithm. If `algorithm` is `null` or `undefined`, then the algorithm is
     * dependent upon the key type (especially Ed25519 and Ed448).
     *
     * If `key` is not a `KeyObject`, this function behaves as if `key` had been
     * passed to {@link createPrivateKey}. If it is an object, the following
     * additional properties can be passed:
     *
     * If the `callback` function is provided this function uses libuv's threadpool.
     * @since v12.0.0
     */
    function sign(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer;
    function sign(
        algorithm: string | null | undefined,
        data: NodeJS.ArrayBufferView,
        key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput,
        callback: (error: Error | null, data: Buffer) => void
    ): void;
    /**
     * Verifies the given signature for `data` using the given key and algorithm. If`algorithm` is `null` or `undefined`, then the algorithm is dependent upon the
     * key type (especially Ed25519 and Ed448).
     *
     * If `key` is not a `KeyObject`, this function behaves as if `key` had been
     * passed to {@link createPublicKey}. If it is an object, the following
     * additional properties can be passed:
     *
     * The `signature` argument is the previously calculated signature for the `data`.
     *
     * Because public keys can be derived from private keys, a private key or a public
     * key may be passed for `key`.
     *
     * If the `callback` function is provided this function uses libuv's threadpool.
     * @since v12.0.0
     */
    function verify(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput, signature: NodeJS.ArrayBufferView): boolean;
    function verify(
        algorithm: string | null | undefined,
        data: NodeJS.ArrayBufferView,
        key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput,
        signature: NodeJS.ArrayBufferView,
        callback: (error: Error | null, result: boolean) => void
    ): void;
    /**
     * Computes the Diffie-Hellman secret based on a `privateKey` and a `publicKey`.
     * Both keys must have the same `asymmetricKeyType`, which must be one of `'dh'`(for Diffie-Hellman), `'ec'` (for ECDH), `'x448'`, or `'x25519'` (for ECDH-ES).
     * @since v13.9.0, v12.17.0
     */
    function diffieHellman(options: { privateKey: KeyObject; publicKey: KeyObject }): Buffer;
    type CipherMode = 'cbc' | 'ccm' | 'cfb' | 'ctr' | 'ecb' | 'gcm' | 'ocb' | 'ofb' | 'stream' | 'wrap' | 'xts';
    interface CipherInfoOptions {
        /**
         * A test key length.
         */
        keyLength?: number | undefined;
        /**
         * A test IV length.
         */
        ivLength?: number | undefined;
    }
    interface CipherInfo {
        /**
         * The name of the cipher.
         */
        name: string;
        /**
         * The nid of the cipher.
         */
        nid: number;
        /**
         * The block size of the cipher in bytes.
         * This property is omitted when mode is 'stream'.
         */
        blockSize?: number | undefined;
        /**
         * The expected or default initialization vector length in bytes.
         * This property is omitted if the cipher does not use an initialization vector.
         */
        ivLength?: number | undefined;
        /**
         * The expected or default key length in bytes.
         */
        keyLength: number;
        /**
         * The cipher mode.
         */
        mode: CipherMode;
    }
    /**
     * Returns information about a given cipher.
     *
     * Some ciphers accept variable length keys and initialization vectors. By default,
     * the `crypto.getCipherInfo()` method will return the default values for these
     * ciphers. To test if a given key length or iv length is acceptable for given
     * cipher, use the `keyLength` and `ivLength` options. If the given values are
     * unacceptable, `undefined` will be returned.
     * @since v15.0.0
     * @param nameOrNid The name or nid of the cipher to query.
     */
    function getCipherInfo(nameOrNid: string | number, options?: CipherInfoOptions): CipherInfo | undefined;
    /**
     * HKDF is a simple key derivation function defined in RFC 5869\. The given `ikm`,`salt` and `info` are used with the `digest` to derive a key of `keylen` bytes.
     *
     * The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an errors occurs while deriving the key, `err` will be set;
     * otherwise `err` will be `null`. The successfully generated `derivedKey` will
     * be passed to the callback as an [&lt;ArrayBuffer&gt;](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). An error will be thrown if any
     * of the input arguments specify invalid values or types.
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const {
     *   hkdf
     * } = await import('crypto');
     *
     * hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
     *   if (err) throw err;
     *   console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'
     * });
     * ```
     * @since v15.0.0
     * @param digest The digest algorithm to use.
     * @param ikm The input keying material. It must be at least one byte in length.
     * @param salt The salt value. Must be provided but can be zero-length.
     * @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
     * @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512`
     * generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
     */
    function hkdf(digest: string, irm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: ArrayBuffer) => void): void;
    /**
     * Provides a synchronous HKDF key derivation function as defined in RFC 5869\. The
     * given `ikm`, `salt` and `info` are used with the `digest` to derive a key of`keylen` bytes.
     *
     * The successfully generated `derivedKey` will be returned as an [&lt;ArrayBuffer&gt;](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer).
     *
     * An error will be thrown if any of the input arguments specify invalid values or
     * types, or if the derived key cannot be generated.
     *
     * ```js
     * import { Buffer } from 'buffer';
     * const {
     *   hkdfSync
     * } = await import('crypto');
     *
     * const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
     * console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'
     * ```
     * @since v15.0.0
     * @param digest The digest algorithm to use.
     * @param ikm The input keying material. It must be at least one byte in length.
     * @param salt The salt value. Must be provided but can be zero-length.
     * @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
     * @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512`
     * generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
     */
    function hkdfSync(digest: string, ikm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number): ArrayBuffer;
    interface SecureHeapUsage {
        /**
         * The total allocated secure heap size as specified using the `--secure-heap=n` command-line flag.
         */
        total: number;
        /**
         * The minimum allocation from the secure heap as specified using the `--secure-heap-min` command-line flag.
         */
        min: number;
        /**
         * The total number of bytes currently allocated from the secure heap.
         */
        used: number;
        /**
         * The calculated ratio of `used` to `total` allocated bytes.
         */
        utilization: number;
    }
    /**
     * @since v15.6.0
     */
    function secureHeapUsed(): SecureHeapUsage;
    interface RandomUUIDOptions {
        /**
         * By default, to improve performance,
         * Node.js will pre-emptively generate and persistently cache enough
         * random data to generate up to 128 random UUIDs. To generate a UUID
         * without using the cache, set `disableEntropyCache` to `true`.
         *
         * @default `false`
         */
        disableEntropyCache?: boolean | undefined;
    }
    /**
     * Generates a random [RFC 4122](https://www.rfc-editor.org/rfc/rfc4122.txt) version 4 UUID. The UUID is generated using a
     * cryptographic pseudorandom number generator.
     * @since v15.6.0
     */
    function randomUUID(options?: RandomUUIDOptions): string;
    interface X509CheckOptions {
        /**
         * @default 'always'
         */
        subject: 'always' | 'never';
        /**
         * @default true
         */
        wildcards: boolean;
        /**
         * @default true
         */
        partialWildcards: boolean;
        /**
         * @default false
         */
        multiLabelWildcards: boolean;
        /**
         * @default false
         */
        singleLabelSubdomains: boolean;
    }
    /**
     * Encapsulates an X509 certificate and provides read-only access to
     * its information.
     *
     * ```js
     * const { X509Certificate } = await import('crypto');
     *
     * const x509 = new X509Certificate('{... pem encoded cert ...}');
     *
     * console.log(x509.subject);
     * ```
     * @since v15.6.0
     */
    class X509Certificate {
        /**
         * Will be \`true\` if this is a Certificate Authority (ca) certificate.
         * @since v15.6.0
         */
        readonly ca: boolean;
        /**
         * The SHA-1 fingerprint of this certificate.
         * @since v15.6.0
         */
        readonly fingerprint: string;
        /**
         * The SHA-256 fingerprint of this certificate.
         * @since v15.6.0
         */
        readonly fingerprint256: string;
        /**
         * The complete subject of this certificate.
         * @since v15.6.0
         */
        readonly subject: string;
        /**
         * The subject alternative name specified for this certificate.
         * @since v15.6.0
         */
        readonly subjectAltName: string;
        /**
         * The information access content of this certificate.
         * @since v15.6.0
         */
        readonly infoAccess: string;
        /**
         * An array detailing the key usages for this certificate.
         * @since v15.6.0
         */
        readonly keyUsage: string[];
        /**
         * The issuer identification included in this certificate.
         * @since v15.6.0
         */
        readonly issuer: string;
        /**
         * The issuer certificate or `undefined` if the issuer certificate is not
         * available.
         * @since v15.9.0
         */
        readonly issuerCertificate?: X509Certificate | undefined;
        /**
         * The public key `KeyObject` for this certificate.
         * @since v15.6.0
         */
        readonly publicKey: KeyObject;
        /**
         * A `Buffer` containing the DER encoding of this certificate.
         * @since v15.6.0
         */
        readonly raw: Buffer;
        /**
         * The serial number of this certificate.
         * @since v15.6.0
         */
        readonly serialNumber: string;
        /**
         * The date/time from which this certificate is considered valid.
         * @since v15.6.0
         */
        readonly validFrom: string;
        /**
         * The date/time until which this certificate is considered valid.
         * @since v15.6.0
         */
        readonly validTo: string;
        constructor(buffer: BinaryLike);
        /**
         * Checks whether the certificate matches the given email address.
         * @since v15.6.0
         * @return Returns `email` if the certificate matches, `undefined` if it does not.
         */
        checkEmail(email: string, options?: X509CheckOptions): string | undefined;
        /**
         * Checks whether the certificate matches the given host name.
         * @since v15.6.0
         * @return Returns `name` if the certificate matches, `undefined` if it does not.
         */
        checkHost(name: string, options?: X509CheckOptions): string | undefined;
        /**
         * Checks whether the certificate matches the given IP address (IPv4 or IPv6).
         * @since v15.6.0
         * @return Returns `ip` if the certificate matches, `undefined` if it does not.
         */
        checkIP(ip: string, options?: X509CheckOptions): string | undefined;
        /**
         * Checks whether this certificate was issued by the given `otherCert`.
         * @since v15.6.0
         */
        checkIssued(otherCert: X509Certificate): boolean;
        /**
         * Checks whether the public key for this certificate is consistent with
         * the given private key.
         * @since v15.6.0
         * @param privateKey A private key.
         */
        checkPrivateKey(privateKey: KeyObject): boolean;
        /**
         * There is no standard JSON encoding for X509 certificates. The`toJSON()` method returns a string containing the PEM encoded
         * certificate.
         * @since v15.6.0
         */
        toJSON(): string;
        /**
         * Returns information about this certificate using the legacy `certificate object` encoding.
         * @since v15.6.0
         */
        toLegacyObject(): PeerCertificate;
        /**
         * Returns the PEM-encoded certificate.
         * @since v15.6.0
         */
        toString(): string;
        /**
         * Verifies that this certificate was signed by the given public key.
         * Does not perform any other validation checks on the certificate.
         * @since v15.6.0
         * @param publicKey A public key.
         */
        verify(publicKey: KeyObject): boolean;
    }
    type LargeNumberLike = NodeJS.ArrayBufferView | SharedArrayBuffer | ArrayBuffer | bigint;
    interface GeneratePrimeOptions {
        add?: LargeNumberLike | undefined;
        rem?: LargeNumberLike | undefined;
        /**
         * @default false
         */
        safe?: boolean | undefined;
        bigint?: boolean | undefined;
    }
    interface GeneratePrimeOptionsBigInt extends GeneratePrimeOptions {
        bigint: true;
    }
    interface GeneratePrimeOptionsArrayBuffer extends GeneratePrimeOptions {
        bigint?: false | undefined;
    }
    /**
     * Generates a pseudorandom prime of `size` bits.
     *
     * If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime.
     *
     * The `options.add` and `options.rem` parameters can be used to enforce additional
     * requirements, e.g., for Diffie-Hellman:
     *
     * * If `options.add` and `options.rem` are both set, the prime will satisfy the
     * condition that `prime % add = rem`.
     * * If only `options.add` is set and `options.safe` is not `true`, the prime will
     * satisfy the condition that `prime % add = 1`.
     * * If only `options.add` is set and `options.safe` is set to `true`, the prime
     * will instead satisfy the condition that `prime % add = 3`. This is necessary
     * because `prime % add = 1` for `options.add > 2` would contradict the condition
     * enforced by `options.safe`.
     * * `options.rem` is ignored if `options.add` is not given.
     *
     * Both `options.add` and `options.rem` must be encoded as big-endian sequences
     * if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`.
     *
     * By default, the prime is encoded as a big-endian sequence of octets
     * in an [&lt;ArrayBuffer&gt;](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a
     * [&lt;bigint&gt;](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt)is provided.
     * @since v15.8.0
     * @param size The size (in bits) of the prime to generate.
     */
    function generatePrime(size: number, callback: (err: Error | null, prime: ArrayBuffer) => void): void;
    function generatePrime(size: number, options: GeneratePrimeOptionsBigInt, callback: (err: Error | null, prime: bigint) => void): void;
    function generatePrime(size: number, options: GeneratePrimeOptionsArrayBuffer, callback: (err: Error | null, prime: ArrayBuffer) => void): void;
    function generatePrime(size: number, options: GeneratePrimeOptions, callback: (err: Error | null, prime: ArrayBuffer | bigint) => void): void;
    /**
     * Generates a pseudorandom prime of `size` bits.
     *
     * If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime.
     *
     * The `options.add` and `options.rem` parameters can be used to enforce additional
     * requirements, e.g., for Diffie-Hellman:
     *
     * * If `options.add` and `options.rem` are both set, the prime will satisfy the
     * condition that `prime % add = rem`.
     * * If only `options.add` is set and `options.safe` is not `true`, the prime will
     * satisfy the condition that `prime % add = 1`.
     * * If only `options.add` is set and `options.safe` is set to `true`, the prime
     * will instead satisfy the condition that `prime % add = 3`. This is necessary
     * because `prime % add = 1` for `options.add > 2` would contradict the condition
     * enforced by `options.safe`.
     * * `options.rem` is ignored if `options.add` is not given.
     *
     * Both `options.add` and `options.rem` must be encoded as big-endian sequences
     * if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`.
     *
     * By default, the prime is encoded as a big-endian sequence of octets
     * in an [&lt;ArrayBuffer&gt;](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a
     * [&lt;bigint&gt;](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt)is provided.
     * @since v15.8.0
     * @param size The size (in bits) of the prime to generate.
     */
    function generatePrimeSync(size: number): ArrayBuffer;
    function generatePrimeSync(size: number, options: GeneratePrimeOptionsBigInt): bigint;
    function generatePrimeSync(size: number, options: GeneratePrimeOptionsArrayBuffer): ArrayBuffer;
    function generatePrimeSync(size: number, options: GeneratePrimeOptions): ArrayBuffer | bigint;
    interface CheckPrimeOptions {
        /**
         * The number of Miller-Rabin probabilistic primality iterations to perform.
         * When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input.
         * Care must be used when selecting a number of checks.
         * Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details.
         *
         * @default 0
         */
        checks?: number | undefined;
    }
    /**
     * Checks the primality of the `candidate`.
     * @since v15.8.0
     * @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length.
     */
    function checkPrime(value: LargeNumberLike, callback: (err: Error | null, result: boolean) => void): void;
    function checkPrime(value: LargeNumberLike, options: CheckPrimeOptions, callback: (err: Error | null, result: boolean) => void): void;
    /**
     * Checks the primality of the `candidate`.
     * @since v15.8.0
     * @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length.
     * @return `true` if the candidate is a prime with an error probability less than `0.25 ** options.checks`.
     */
    function checkPrimeSync(candidate: LargeNumberLike, options?: CheckPrimeOptions): boolean;
    namespace webcrypto {
        class CryptoKey {} // placeholder
    }
}
declare module 'node:crypto' {
    export * from 'crypto';
}