/** * Password-Based Key-Derivation Function #2 implementation. * * See RFC 2898 for details. * * @author Dave Longley * * Copyright (c) 2010-2013 Digital Bazaar, Inc. */ (function() { /* ########## Begin module implementation ########## */ function initModule(forge) { var pkcs5 = forge.pkcs5 = forge.pkcs5 || {}; var _nodejs = ( typeof process !== 'undefined' && process.versions && process.versions.node); var crypto; if(_nodejs && !forge.disableNativeCode) { crypto = require('crypto'); } /** * Derives a key from a password. * * @param p the password as a binary-encoded string of bytes. * @param s the salt as a binary-encoded string of bytes. * @param c the iteration count, a positive integer. * @param dkLen the intended length, in bytes, of the derived key, * (max: 2^32 - 1) * hash length of the PRF. * @param [md] the message digest (or algorithm identifier as a string) to use * in the PRF, defaults to SHA-1. * @param [callback(err, key)] presence triggers asynchronous version, called * once the operation completes. * * @return the derived key, as a binary-encoded string of bytes, for the * synchronous version (if no callback is specified). */ forge.pbkdf2 = pkcs5.pbkdf2 = function(p, s, c, dkLen, md, callback) { if(typeof md === 'function') { callback = md; md = null; } // use native implementation if possible and not disabled, note that // some node versions only support SHA-1, others allow digest to be changed if(_nodejs && !forge.disableNativeCode && crypto.pbkdf2 && (md === null || typeof md !== 'object') && (crypto.pbkdf2Sync.length > 4 || (!md || md === 'sha1'))) { if(typeof md !== 'string') { // default prf to SHA-1 md = 'sha1'; } s = new Buffer(s, 'binary'); if(!callback) { if(crypto.pbkdf2Sync.length === 4) { return crypto.pbkdf2Sync(p, s, c, dkLen).toString('binary'); } return crypto.pbkdf2Sync(p, s, c, dkLen, md).toString('binary'); } if(crypto.pbkdf2Sync.length === 4) { return crypto.pbkdf2(p, s, c, dkLen, function(err, key) { if(err) { return callback(err); } callback(null, key.toString('binary')); }); } return crypto.pbkdf2(p, s, c, dkLen, md, function(err, key) { if(err) { return callback(err); } callback(null, key.toString('binary')); }); } if(typeof md === 'undefined' || md === null) { // default prf to SHA-1 md = forge.md.sha1.create(); } if(typeof md === 'string') { if(!(md in forge.md.algorithms)) { throw new Error('Unknown hash algorithm: ' + md); } md = forge.md[md].create(); } var hLen = md.digestLength; /* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and stop. */ if(dkLen > (0xFFFFFFFF * hLen)) { var err = new Error('Derived key is too long.'); if(callback) { return callback(err); } throw err; } /* 2. Let len be the number of hLen-octet blocks in the derived key, rounding up, and let r be the number of octets in the last block: len = CEIL(dkLen / hLen), r = dkLen - (len - 1) * hLen. */ var len = Math.ceil(dkLen / hLen); var r = dkLen - (len - 1) * hLen; /* 3. For each block of the derived key apply the function F defined below to the password P, the salt S, the iteration count c, and the block index to compute the block: T_1 = F(P, S, c, 1), T_2 = F(P, S, c, 2), ... T_len = F(P, S, c, len), where the function F is defined as the exclusive-or sum of the first c iterates of the underlying pseudorandom function PRF applied to the password P and the concatenation of the salt S and the block index i: F(P, S, c, i) = u_1 XOR u_2 XOR ... XOR u_c where u_1 = PRF(P, S || INT(i)), u_2 = PRF(P, u_1), ... u_c = PRF(P, u_{c-1}). Here, INT(i) is a four-octet encoding of the integer i, most significant octet first. */ var prf = forge.hmac.create(); prf.start(md, p); var dk = ''; var xor, u_c, u_c1; // sync version if(!callback) { for(var i = 1; i <= len; ++i) { // PRF(P, S || INT(i)) (first iteration) prf.start(null, null); prf.update(s); prf.update(forge.util.int32ToBytes(i)); xor = u_c1 = prf.digest().getBytes(); // PRF(P, u_{c-1}) (other iterations) for(var j = 2; j <= c; ++j) { prf.start(null, null); prf.update(u_c1); u_c = prf.digest().getBytes(); // F(p, s, c, i) xor = forge.util.xorBytes(xor, u_c, hLen); u_c1 = u_c; } /* 4. Concatenate the blocks and extract the first dkLen octets to produce a derived key DK: DK = T_1 || T_2 || ... || T_len<0..r-1> */ dk += (i < len) ? xor : xor.substr(0, r); } /* 5. Output the derived key DK. */ return dk; } // async version var i = 1, j; function outer() { if(i > len) { // done return callback(null, dk); } // PRF(P, S || INT(i)) (first iteration) prf.start(null, null); prf.update(s); prf.update(forge.util.int32ToBytes(i)); xor = u_c1 = prf.digest().getBytes(); // PRF(P, u_{c-1}) (other iterations) j = 2; inner(); } function inner() { if(j <= c) { prf.start(null, null); prf.update(u_c1); u_c = prf.digest().getBytes(); // F(p, s, c, i) xor = forge.util.xorBytes(xor, u_c, hLen); u_c1 = u_c; ++j; return forge.util.setImmediate(inner); } /* 4. Concatenate the blocks and extract the first dkLen octets to produce a derived key DK: DK = T_1 || T_2 || ... || T_len<0..r-1> */ dk += (i < len) ? xor : xor.substr(0, r); ++i; outer(); } outer(); }; } // end module implementation /* ########## Begin module wrapper ########## */ var name = 'pbkdf2'; if(typeof define !== 'function') { // NodeJS -> AMD if(typeof module === 'object' && module.exports) { var nodeJS = true; define = function(ids, factory) { factory(require, module); }; } else { //