# Forge [![Build Status][travis-ci-png]][travis-ci-site] [travis-ci-png]: https://travis-ci.org/digitalbazaar/forge.png?branch=master [travis-ci-site]: https://travis-ci.org/digitalbazaar/forge A native implementation of [TLS][] (and various other cryptographic tools) in [JavaScript][]. ## Introduction The Forge software is a fully native implementation of the [TLS][] protocol in JavaScript as well as a set of tools for developing Web Apps that utilize many network resources. ## Performance Forge is fast. Benchmarks against other popular JavaScript cryptography libraries can be found here: http://dominictarr.github.io/crypto-bench/ http://cryptojs.altervista.org/test/simulate-threading-speed_test.html ## Getting Started ------------------ ### Node.js ### If you want to use forge with [node.js][], it is available through `npm`: https://npmjs.org/package/node-forge Installation: npm install node-forge You can then use forge as a regular module: var forge = require('node-forge'); ### Requirements ### * General * Optional: GNU autotools for the build infrastructure if using Flash. * Building a Browser Bundle: * nodejs * npm * Testing * nodejs * Optional: Python and OpenSSL development environment to build * a special SSL module with session cache support for testing with flash. * http://www.python.org/dev/ * http://www.openssl.org/ * Debian users should install python-dev and libssl-dev. * Optional: Flash * A pre-built SocketPool.swf is included. * Adobe Flex 3 SDK to build the Flash socket code. * http://opensource.adobe.com/wiki/display/flexsdk/ ### Building a browser bundle ### To create a minimized JavaScript bundle, run the following: ``` npm install npm run minify ``` This will create a single minimized file that can be included in the browser: ``` js/forge.min.js ``` Include the file via: ```html ``` Note that the minify script depends on the requirejs package, and that the requirejs binary 'r.js' assumes that the name of the node binary is 'node' not 'nodejs', as it is on some systems. You may need to change the hashbang line to use 'nodejs' or run the command manually. To create a single non-minimized file that can be included in the browser: ``` npm install npm run bundle ``` This will create: ``` js/forge.bundle.js ``` Include the file via: ```html ``` The above bundles will synchronously create a global 'forge' object. Keep in mind that these bundles will not include any WebWorker scripts (eg: prime.worker.js) or their dependencies, so these will need to be accessible from the browser if any WebWorkers are used. ### Testing with NodeJS & RequireJS ### A test server for [node.js][] can be found at `./nodejs`. The following are included: * Example of how to use `forge` within NodeJS in the form of a [mocha](http://mochajs.org/) test. * Example of how to serve `forge` to the browser using [RequireJS](http://requirejs.org/). To run: cd nodejs npm install npm test npm start ### Old build system that includes flash support ### To build the whole project, including Flash, run the following: $ ./build-setup $ make This will create the SWF, symlink all the JavaScript files, and build a Python SSL module for testing. To see configure options, run `./configure --help`. ### Old test system including flash support ### A test server is provided which can be run in TLS mode and non-TLS mode. Use the --help option to get help for configuring ports. The server will print out the local URL you can vist to run tests. Some of the simplier tests should be run with just the non-TLS server:: $ ./tests/server.py More advanced tests need TLS enabled:: $ ./tests/server.py --tls ## Contributing --------------- Any contributions (eg: PRs) that are accepted will be brought under the same license used by the rest of the Forge project. This license allows Forge to be used under the terms of either the BSD License or the GNU General Public License (GPL) Version 2. See: [LICENSE](https://github.com/digitalbazaar/forge/blob/cbebca3780658703d925b61b2caffb1d263a6c1d/LICENSE) If a contribution contains 3rd party source code with its own license, it may retain it, so long as that license is compatible with the Forge license. ## Documentation ---------------- ### Transports * [TLS](#tls) * [HTTP](#http) * [SSH](#ssh) * [XHR](#xhr) * [Sockets](#socket) ### Ciphers * [CIPHER](#cipher) * [AES](#aes) * [DES](#des) * [RC2](#rc2) ### PKI * [RSA](#rsa) * [RSA-KEM](#rsakem) * [X.509](#x509) * [PKCS#5](#pkcs5) * [PKCS#7](#pkcs7) * [PKCS#8](#pkcs8) * [PKCS#10](#pkcs10) * [PKCS#12](#pkcs12) * [ASN.1](#asn) ### Message Digests * [SHA1](#sha1) * [SHA256](#sha256) * [SHA384](#sha384) * [SHA512](#sha512) * [MD5](#md5) * [HMAC](#hmac) ### Utilities * [Prime](#prime) * [PRNG](#prng) * [Tasks](#task) * [Utilities](#util) * [Logging](#log) * [Debugging](#debug) * [Flash Socket Policy Module](#fsp) --------------------------------------- If at any time you wish to disable the use of native code, where available, for particular forge features like its secure random number generator, you may set the ```disableNativeCode``` flag on ```forge``` to ```true```. It is not recommended that you set this flag as native code is typically more performant and may have stronger security properties. It may be useful to set this flag to test certain features that you plan to run in environments that are different from your testing environment. To disable native code when including forge in the browser: ```js forge = {disableNativeCode: true}; // now include forge script file(s) // Note: with this approach, script files *must* // be included after initializing the global forge var // alternatively, include script files first and then call forge = forge({disableNativeCode: true}); // Note: forge will be permanently reconfigured now; // to avoid this but use the same "forge" var name, // you can wrap your code in a function to shadow the // global var, eg: (function(forge) { // ... })(forge({disableNativeCode: true})); ``` To disable native code when using node.js: ```js var forge = require('node-forge')({disableNativeCode: true}); ``` --------------------------------------- ## Transports ### TLS Provides a native javascript client and server-side [TLS][] implementation. __Examples__ ```js // create TLS client var client = forge.tls.createConnection({ server: false, caStore: /* Array of PEM-formatted certs or a CA store object */, sessionCache: {}, // supported cipher suites in order of preference cipherSuites: [ forge.tls.CipherSuites.TLS_RSA_WITH_AES_128_CBC_SHA, forge.tls.CipherSuites.TLS_RSA_WITH_AES_256_CBC_SHA], virtualHost: 'example.com', verify: function(connection, verified, depth, certs) { if(depth === 0) { var cn = certs[0].subject.getField('CN').value; if(cn !== 'example.com') { verified = { alert: forge.tls.Alert.Description.bad_certificate, message: 'Certificate common name does not match hostname.' }; } } return verified; }, connected: function(connection) { console.log('connected'); // send message to server connection.prepare(forge.util.encodeUtf8('Hi server!')); /* NOTE: experimental, start heartbeat retransmission timer myHeartbeatTimer = setInterval(function() { connection.prepareHeartbeatRequest(forge.util.createBuffer('1234')); }, 5*60*1000);*/ }, /* provide a client-side cert if you want getCertificate: function(connection, hint) { return myClientCertificate; }, /* the private key for the client-side cert if provided */ getPrivateKey: function(connection, cert) { return myClientPrivateKey; }, tlsDataReady: function(connection) { // TLS data (encrypted) is ready to be sent to the server sendToServerSomehow(connection.tlsData.getBytes()); // if you were communicating with the server below, you'd do: // server.process(connection.tlsData.getBytes()); }, dataReady: function(connection) { // clear data from the server is ready console.log('the server sent: ' + forge.util.decodeUtf8(connection.data.getBytes())); // close connection connection.close(); }, /* NOTE: experimental heartbeatReceived: function(connection, payload) { // restart retransmission timer, look at payload clearInterval(myHeartbeatTimer); myHeartbeatTimer = setInterval(function() { connection.prepareHeartbeatRequest(forge.util.createBuffer('1234')); }, 5*60*1000); payload.getBytes(); },*/ closed: function(connection) { console.log('disconnected'); }, error: function(connection, error) { console.log('uh oh', error); } }); // start the handshake process client.handshake(); // when encrypted TLS data is received from the server, process it client.process(encryptedBytesFromServer); // create TLS server var server = forge.tls.createConnection({ server: true, caStore: /* Array of PEM-formatted certs or a CA store object */, sessionCache: {}, // supported cipher suites in order of preference cipherSuites: [ forge.tls.CipherSuites.TLS_RSA_WITH_AES_128_CBC_SHA, forge.tls.CipherSuites.TLS_RSA_WITH_AES_256_CBC_SHA], // require a client-side certificate if you want verifyClient: true, verify: function(connection, verified, depth, certs) { if(depth === 0) { var cn = certs[0].subject.getField('CN').value; if(cn !== 'the-client') { verified = { alert: forge.tls.Alert.Description.bad_certificate, message: 'Certificate common name does not match expected client.' }; } } return verified; }, connected: function(connection) { console.log('connected'); // send message to client connection.prepare(forge.util.encodeUtf8('Hi client!')); /* NOTE: experimental, start heartbeat retransmission timer myHeartbeatTimer = setInterval(function() { connection.prepareHeartbeatRequest(forge.util.createBuffer('1234')); }, 5*60*1000);*/ }, getCertificate: function(connection, hint) { return myServerCertificate; }, getPrivateKey: function(connection, cert) { return myServerPrivateKey; }, tlsDataReady: function(connection) { // TLS data (encrypted) is ready to be sent to the client sendToClientSomehow(connection.tlsData.getBytes()); // if you were communicating with the client above you'd do: // client.process(connection.tlsData.getBytes()); }, dataReady: function(connection) { // clear data from the client is ready console.log('the client sent: ' + forge.util.decodeUtf8(connection.data.getBytes())); // close connection connection.close(); }, /* NOTE: experimental heartbeatReceived: function(connection, payload) { // restart retransmission timer, look at payload clearInterval(myHeartbeatTimer); myHeartbeatTimer = setInterval(function() { connection.prepareHeartbeatRequest(forge.util.createBuffer('1234')); }, 5*60*1000); payload.getBytes(); },*/ closed: function(connection) { console.log('disconnected'); }, error: function(connection, error) { console.log('uh oh', error); } }); // when encrypted TLS data is received from the client, process it server.process(encryptedBytesFromClient); ``` Connect to a TLS server using node's net.Socket: ```js var socket = new net.Socket(); var client = forge.tls.createConnection({ server: false, verify: function(connection, verified, depth, certs) { // skip verification for testing console.log('[tls] server certificate verified'); return true; }, connected: function(connection) { console.log('[tls] connected'); // prepare some data to send (note that the string is interpreted as // 'binary' encoded, which works for HTTP which only uses ASCII, use // forge.util.encodeUtf8(str) otherwise client.prepare('GET / HTTP/1.0\r\n\r\n'); }, tlsDataReady: function(connection) { // encrypted data is ready to be sent to the server var data = connection.tlsData.getBytes(); socket.write(data, 'binary'); // encoding should be 'binary' }, dataReady: function(connection) { // clear data from the server is ready var data = connection.data.getBytes(); console.log('[tls] data received from the server: ' + data); }, closed: function() { console.log('[tls] disconnected'); }, error: function(connection, error) { console.log('[tls] error', error); } }); socket.on('connect', function() { console.log('[socket] connected'); client.handshake(); }); socket.on('data', function(data) { client.process(data.toString('binary')); // encoding should be 'binary' }); socket.on('end', function() { console.log('[socket] disconnected'); }); // connect to google.com socket.connect(443, 'google.com'); // or connect to gmail's imap server (but don't send the HTTP header above) //socket.connect(993, 'imap.gmail.com'); ``` ### HTTP Provides a native [JavaScript][] mini-implementation of an http client that uses pooled sockets. __Examples__ ```js // create an HTTP GET request var request = forge.http.createRequest({method: 'GET', path: url.path}); // send the request somewhere sendSomehow(request.toString()); // receive response var buffer = forge.util.createBuffer(); var response = forge.http.createResponse(); var someAsyncDataHandler = function(bytes) { if(!response.bodyReceived) { buffer.putBytes(bytes); if(!response.headerReceived) { if(response.readHeader(buffer)) { console.log('HTTP response header: ' + response.toString()); } } if(response.headerReceived && !response.bodyReceived) { if(response.readBody(buffer)) { console.log('HTTP response body: ' + response.body); } } } }; ``` ### SSH Provides some SSH utility functions. __Examples__ ```js // encodes (and optionally encrypts) a private RSA key as a Putty PPK file forge.ssh.privateKeyToPutty(privateKey, passphrase, comment); // encodes a public RSA key as an OpenSSH file forge.ssh.publicKeyToOpenSSH(key, comment); // encodes a private RSA key as an OpenSSH file forge.ssh.privateKeyToOpenSSH(privateKey, passphrase); // gets the SSH public key fingerprint in a byte buffer forge.ssh.getPublicKeyFingerprint(key); // gets a hex-encoded, colon-delimited SSH public key fingerprint forge.ssh.getPublicKeyFingerprint(key, {encoding: 'hex', delimiter: ':'}); ``` ### XHR Provides an XmlHttpRequest implementation using forge.http as a backend. __Examples__ ```js ``` ### Sockets Provides an interface to create and use raw sockets provided via Flash. __Examples__ ```js ``` --------------------------------------- ## Ciphers ### CIPHER Provides a basic API for block encryption and decryption. There is built-in support for the ciphers: [AES][], [3DES][], and [DES][], and for the modes of operation: [ECB][], [CBC][], [CFB][], [OFB][], [CTR][], and [GCM][]. These algorithms are currently supported: * AES-ECB * AES-CBC * AES-CFB * AES-OFB * AES-CTR * AES-GCM * 3DES-ECB * 3DES-CBC * DES-ECB * DES-CBC When using an [AES][] algorithm, the key size will determine whether AES-128, AES-192, or AES-256 is used (all are supported). When a [DES][] algorithm is used, the key size will determine whether [3DES][] or regular [DES][] is used. Use a [3DES][] algorithm to enforce Triple-DES. __Examples__ ```js // generate a random key and IV // Note: a key size of 16 bytes will use AES-128, 24 => AES-192, 32 => AES-256 var key = forge.random.getBytesSync(16); var iv = forge.random.getBytesSync(16); /* alternatively, generate a password-based 16-byte key var salt = forge.random.getBytesSync(128); var key = forge.pkcs5.pbkdf2('password', salt, numIterations, 16); */ // encrypt some bytes using CBC mode // (other modes include: ECB, CFB, OFB, CTR, and GCM) var cipher = forge.cipher.createCipher('AES-CBC', key); cipher.start({iv: iv}); cipher.update(forge.util.createBuffer(someBytes)); cipher.finish(); var encrypted = cipher.output; // outputs encrypted hex console.log(encrypted.toHex()); // decrypt some bytes using CBC mode // (other modes include: CFB, OFB, CTR, and GCM) var decipher = forge.cipher.createDecipher('AES-CBC', key); decipher.start({iv: iv}); decipher.update(encrypted); decipher.finish(); // outputs decrypted hex console.log(decipher.output.toHex()); // encrypt some bytes using GCM mode var cipher = forge.cipher.createCipher('AES-GCM', key); cipher.start({ iv: iv, // should be a 12-byte binary-encoded string or byte buffer additionalData: 'binary-encoded string', // optional tagLength: 128 // optional, defaults to 128 bits }); cipher.update(forge.util.createBuffer(someBytes)); cipher.finish(); var encrypted = cipher.output; var tag = cipher.mode.tag; // outputs encrypted hex console.log(encrypted.toHex()); // outputs authentication tag console.log(tag.toHex()); // decrypt some bytes using GCM mode var decipher = forge.cipher.createDecipher('AES-GCM', key); decipher.start({ iv: iv, additionalData: 'binary-encoded string', // optional tagLength: 128, // optional, defaults to 128 bits tag: tag // authentication tag from encryption }); decipher.update(encrypted); var pass = decipher.finish(); // pass is false if there was a failure (eg: authentication tag didn't match) if(pass) { // outputs decrypted hex console.log(decipher.output.toHex()); } ``` Using forge in node.js to match openssl's "enc" command line tool (**Note**: OpenSSL "enc" uses a non-standard file format with a custom key derivation function and a fixed iteration count of 1, which some consider less secure than alternatives such as [OpenPGP](https://tools.ietf.org/html/rfc4880)/[GnuPG](https://www.gnupg.org/)): ```js var forge = require('node-forge'); var fs = require('fs'); // openssl enc -des3 -in input.txt -out input.enc function encrypt(password) { var input = fs.readFileSync('input.txt', {encoding: 'binary'}); // 3DES key and IV sizes var keySize = 24; var ivSize = 8; // get derived bytes // Notes: // 1. If using an alternative hash (eg: "-md sha1") pass // "forge.md.sha1.create()" as the final parameter. // 2. If using "-nosalt", set salt to null. var salt = forge.random.getBytesSync(8); // var md = forge.md.sha1.create(); // "-md sha1" var derivedBytes = forge.pbe.opensslDeriveBytes( password, salt, keySize + ivSize/*, md*/); var buffer = forge.util.createBuffer(derivedBytes); var key = buffer.getBytes(keySize); var iv = buffer.getBytes(ivSize); var cipher = forge.cipher.createCipher('3DES-CBC', key); cipher.start({iv: iv}); cipher.update(forge.util.createBuffer(input, 'binary')); cipher.finish(); var output = forge.util.createBuffer(); // if using a salt, prepend this to the output: if(salt !== null) { output.putBytes('Salted__'); // (add to match openssl tool output) output.putBytes(salt); } output.putBuffer(cipher.output); fs.writeFileSync('input.enc', output.getBytes(), {encoding: 'binary'}); } // openssl enc -d -des3 -in input.enc -out input.dec.txt function decrypt(password) { var input = fs.readFileSync('input.enc', {encoding: 'binary'}); // parse salt from input input = forge.util.createBuffer(input, 'binary'); // skip "Salted__" (if known to be present) input.getBytes('Salted__'.length); // read 8-byte salt var salt = input.getBytes(8); // Note: if using "-nosalt", skip above parsing and use // var salt = null; // 3DES key and IV sizes var keySize = 24; var ivSize = 8; var derivedBytes = forge.pbe.opensslDeriveBytes( password, salt, keySize + ivSize); var buffer = forge.util.createBuffer(derivedBytes); var key = buffer.getBytes(keySize); var iv = buffer.getBytes(ivSize); var decipher = forge.cipher.createDecipher('3DES-CBC', key); decipher.start({iv: iv}); decipher.update(input); var result = decipher.finish(); // check 'result' for true/false fs.writeFileSync( 'input.dec.txt', decipher.output.getBytes(), {encoding: 'binary'}); } ``` ### AES Provides [AES][] encryption and decryption in [CBC][], [CFB][], [OFB][], [CTR][], and [GCM][] modes. See [CIPHER](#cipher) for examples. ### DES Provides [3DES][] and [DES][] encryption and decryption in [ECB][] and [CBC][] modes. See [CIPHER](#cipher) for examples. ### RC2 __Examples__ ```js // generate a random key and IV var key = forge.random.getBytesSync(16); var iv = forge.random.getBytesSync(8); // encrypt some bytes var cipher = forge.rc2.createEncryptionCipher(key); cipher.start(iv); cipher.update(forge.util.createBuffer(someBytes)); cipher.finish(); var encrypted = cipher.output; // outputs encrypted hex console.log(encrypted.toHex()); // decrypt some bytes var cipher = forge.rc2.createDecryptionCipher(key); cipher.start(iv); cipher.update(encrypted); cipher.finish(); // outputs decrypted hex console.log(cipher.output.toHex()); ``` --------------------------------------- ## PKI Provides [X.509][] certificate and RSA public and private key encoding, decoding, encryption/decryption, and signing/verifying. ### RSA __Examples__ ```js var rsa = forge.pki.rsa; // generate an RSA key pair synchronously var keypair = rsa.generateKeyPair({bits: 2048, e: 0x10001}); // generate an RSA key pair asynchronously (uses web workers if available) // use workers: -1 to run a fast core estimator to optimize # of workers rsa.generateKeyPair({bits: 2048, workers: 2}, function(err, keypair) { // keypair.privateKey, keypair.publicKey }); // generate an RSA key pair in steps that attempt to run for a specified period // of time on the main JS thread var state = rsa.createKeyPairGenerationState(2048, 0x10001); var step = function() { // run for 100 ms if(!rsa.stepKeyPairGenerationState(state, 100)) { setTimeout(step, 1); } else { // done, turn off progress indicator, use state.keys } }; // turn on progress indicator, schedule generation to run setTimeout(step); // sign data with a private key and output DigestInfo DER-encoded bytes // (defaults to RSASSA PKCS#1 v1.5) var md = forge.md.sha1.create(); md.update('sign this', 'utf8'); var signature = privateKey.sign(md); // verify data with a public key // (defaults to RSASSA PKCS#1 v1.5) var verified = publicKey.verify(md.digest().bytes(), signature); // sign data using RSASSA-PSS where PSS uses a SHA-1 hash, a SHA-1 based // masking function MGF1, and a 20 byte salt var md = forge.md.sha1.create(); md.update('sign this', 'utf8'); var pss = forge.pss.create({ md: forge.md.sha1.create(), mgf: forge.mgf.mgf1.create(forge.md.sha1.create()), saltLength: 20 // optionally pass 'prng' with a custom PRNG implementation // optionalls pass 'salt' with a forge.util.ByteBuffer w/custom salt }); var signature = privateKey.sign(md, pss); // verify RSASSA-PSS signature var pss = forge.pss.create({ md: forge.md.sha1.create(), mgf: forge.mgf.mgf1.create(forge.md.sha1.create()), saltLength: 20 // optionally pass 'prng' with a custom PRNG implementation }); var md = forge.md.sha1.create(); md.update('sign this', 'utf8'); publicKey.verify(md.digest().getBytes(), signature, pss); // encrypt data with a public key (defaults to RSAES PKCS#1 v1.5) var encrypted = publicKey.encrypt(bytes); // decrypt data with a private key (defaults to RSAES PKCS#1 v1.5) var decrypted = privateKey.decrypt(encrypted); // encrypt data with a public key using RSAES PKCS#1 v1.5 var encrypted = publicKey.encrypt(bytes, 'RSAES-PKCS1-V1_5'); // decrypt data with a private key using RSAES PKCS#1 v1.5 var decrypted = privateKey.decrypt(encrypted, 'RSAES-PKCS1-V1_5'); // encrypt data with a public key using RSAES-OAEP var encrypted = publicKey.encrypt(bytes, 'RSA-OAEP'); // decrypt data with a private key using RSAES-OAEP var decrypted = privateKey.decrypt(encrypted, 'RSA-OAEP'); // encrypt data with a public key using RSAES-OAEP/SHA-256 var encrypted = publicKey.encrypt(bytes, 'RSA-OAEP', { md: forge.md.sha256.create() }); // decrypt data with a private key using RSAES-OAEP/SHA-256 var decrypted = privateKey.decrypt(encrypted, 'RSA-OAEP', { md: forge.md.sha256.create() }); // encrypt data with a public key using RSAES-OAEP/SHA-256/MGF1-SHA-1 // compatible with Java's RSA/ECB/OAEPWithSHA-256AndMGF1Padding var encrypted = publicKey.encrypt(bytes, 'RSA-OAEP', { md: forge.md.sha256.create(), mgf1: { md: forge.md.sha1.create() } }); // decrypt data with a private key using RSAES-OAEP/SHA-256/MGF1-SHA-1 // compatible with Java's RSA/ECB/OAEPWithSHA-256AndMGF1Padding var decrypted = privateKey.decrypt(encrypted, 'RSA-OAEP', { md: forge.md.sha256.create(), mgf1: { md: forge.md.sha1.create() } }); ``` ### RSA-KEM __Examples__ ```js // generate an RSA key pair asynchronously (uses web workers if available) // use workers: -1 to run a fast core estimator to optimize # of workers forge.rsa.generateKeyPair({bits: 2048, workers: -1}, function(err, keypair) { // keypair.privateKey, keypair.publicKey }); // generate and encapsulate a 16-byte secret key var kdf1 = new forge.kem.kdf1(forge.md.sha1.create()); var kem = forge.kem.rsa.create(kdf1); var result = kem.encrypt(keypair.publicKey, 16); // result has 'encapsulation' and 'key' // encrypt some bytes var iv = forge.random.getBytesSync(12); var someBytes = 'hello world!'; var cipher = forge.cipher.createCipher('AES-GCM', result.key); cipher.start({iv: iv}); cipher.update(forge.util.createBuffer(someBytes)); cipher.finish(); var encrypted = cipher.output.getBytes(); var tag = cipher.mode.tag.getBytes(); // send 'encrypted', 'iv', 'tag', and result.encapsulation to recipient // decrypt encapsulated 16-byte secret key var kdf1 = new forge.kem.kdf1(forge.md.sha1.create()); var kem = forge.kem.rsa.create(kdf1); var key = kem.decrypt(keypair.privateKey, result.encapsulation, 16); // decrypt some bytes var decipher = forge.cipher.createDecipher('AES-GCM', key); decipher.start({iv: iv, tag: tag}); decipher.update(forge.util.createBuffer(encrypted)); var pass = decipher.finish(); // pass is false if there was a failure (eg: authentication tag didn't match) if(pass) { // outputs 'hello world!' console.log(decipher.output.getBytes()); } ``` ### X.509 __Examples__ ```js var pki = forge.pki; // convert a PEM-formatted public key to a Forge public key var publicKey = pki.publicKeyFromPem(pem); // convert a Forge public key to PEM-format var pem = pki.publicKeyToPem(publicKey); // convert an ASN.1 SubjectPublicKeyInfo to a Forge public key var publicKey = pki.publicKeyFromAsn1(subjectPublicKeyInfo); // convert a Forge public key to an ASN.1 SubjectPublicKeyInfo var subjectPublicKeyInfo = pki.publicKeyToAsn1(publicKey); // gets a SHA-1 RSAPublicKey fingerprint a byte buffer pki.getPublicKeyFingerprint(key); // gets a SHA-1 SubjectPublicKeyInfo fingerprint a byte buffer pki.getPublicKeyFingerprint(key, {type: 'SubjectPublicKeyInfo'}); // gets a hex-encoded, colon-delimited SHA-1 RSAPublicKey public key fingerprint pki.getPublicKeyFingerprint(key, {encoding: 'hex', delimiter: ':'}); // gets a hex-encoded, colon-delimited SHA-1 SubjectPublicKeyInfo public key fingerprint pki.getPublicKeyFingerprint(key, { type: 'SubjectPublicKeyInfo', encoding: 'hex', delimiter: ':' }); // gets a hex-encoded, colon-delimited MD5 RSAPublicKey public key fingerprint pki.getPublicKeyFingerprint(key, { md: forge.md.md5.create(), encoding: 'hex', delimiter: ':' }); // creates a CA store var caStore = pki.createCaStore([/* PEM-encoded cert */, ...]); // add a certificate to the CA store caStore.addCertificate(certObjectOrPemString); // gets the issuer (its certificate) for the given certificate var issuerCert = caStore.getIssuer(subjectCert); // verifies a certificate chain against a CA store pki.verifyCertificateChain(caStore, chain, customVerifyCallback); // signs a certificate using the given private key cert.sign(privateKey); // signs a certificate using SHA-256 instead of SHA-1 cert.sign(privateKey, forge.md.sha256.create()); // verifies an issued certificate using the certificates public key var verified = issuer.verify(issued); // generate a keypair and create an X.509v3 certificate var keys = pki.rsa.generateKeyPair(2048); var cert = pki.createCertificate(); cert.publicKey = keys.publicKey; // alternatively set public key from a csr //cert.publicKey = csr.publicKey; cert.serialNumber = '01'; cert.validity.notBefore = new Date(); cert.validity.notAfter = new Date(); cert.validity.notAfter.setFullYear(cert.validity.notBefore.getFullYear() + 1); var attrs = [{ name: 'commonName', value: 'example.org' }, { name: 'countryName', value: 'US' }, { shortName: 'ST', value: 'Virginia' }, { name: 'localityName', value: 'Blacksburg' }, { name: 'organizationName', value: 'Test' }, { shortName: 'OU', value: 'Test' }]; cert.setSubject(attrs); // alternatively set subject from a csr //cert.setSubject(csr.subject.attributes); cert.setIssuer(attrs); cert.setExtensions([{ name: 'basicConstraints', cA: true }, { name: 'keyUsage', keyCertSign: true, digitalSignature: true, nonRepudiation: true, keyEncipherment: true, dataEncipherment: true }, { name: 'extKeyUsage', serverAuth: true, clientAuth: true, codeSigning: true, emailProtection: true, timeStamping: true }, { name: 'nsCertType', client: true, server: true, email: true, objsign: true, sslCA: true, emailCA: true, objCA: true }, { name: 'subjectAltName', altNames: [{ type: 6, // URI value: 'http://example.org/webid#me' }, { type: 7, // IP ip: '127.0.0.1' }] }, { name: 'subjectKeyIdentifier' }]); /* alternatively set extensions from a csr var extensions = csr.getAttribute({name: 'extensionRequest'}).extensions; // optionally add more extensions extensions.push.apply(extensions, [{ name: 'basicConstraints', cA: true }, { name: 'keyUsage', keyCertSign: true, digitalSignature: true, nonRepudiation: true, keyEncipherment: true, dataEncipherment: true }]); cert.setExtensions(extensions); */ // self-sign certificate cert.sign(keys.privateKey); // convert a Forge certificate to PEM var pem = pki.certificateToPem(cert); // convert a Forge certificate from PEM var cert = pki.certificateFromPem(pem); // convert an ASN.1 X.509x3 object to a Forge certificate var cert = pki.certificateFromAsn1(obj); // convert a Forge certificate to an ASN.1 X.509v3 object var asn1Cert = pki.certificateToAsn1(cert); ``` ### PKCS#5 Provides the password-based key-derivation function from [PKCS#5][]. __Examples__ ```js // generate a password-based 16-byte key // note an optional message digest can be passed as the final parameter var salt = forge.random.getBytesSync(128); var derivedKey = forge.pkcs5.pbkdf2('password', salt, numIterations, 16); // generate key asynchronously // note an optional message digest can be passed before the callback forge.pkcs5.pbkdf2('password', salt, numIterations, 16, function(err, derivedKey) { // do something w/derivedKey }); ``` ### PKCS#7 Provides cryptographically protected messages from [PKCS#7][]. __Examples__ ```js // convert a message from PEM var p7 = forge.pkcs7.messageFromPem(pem); // look at p7.recipients // find a recipient by the issuer of a certificate var recipient = p7.findRecipient(cert); // decrypt p7.decrypt(p7.recipients[0], privateKey); // create a p7 enveloped message var p7 = forge.pkcs7.createEnvelopedData(); // add a recipient var cert = forge.pki.certificateFromPem(certPem); p7.addRecipient(cert); // set content p7.content = forge.util.createBuffer('Hello'); // encrypt p7.encrypt(); // convert message to PEM var pem = forge.pkcs7.messageToPem(p7); // create a degenerate PKCS#7 certificate container // (CRLs not currently supported, only certificates) var p7 = forge.pkcs7.createSignedData(); p7.addCertificate(certOrCertPem1); p7.addCertificate(certOrCertPem2); var pem = forge.pkcs7.messageToPem(p7); ``` ### PKCS#8 __Examples__ ```js var pki = forge.pki; // convert a PEM-formatted private key to a Forge private key var privateKey = pki.privateKeyFromPem(pem); // convert a Forge private key to PEM-format var pem = pki.privateKeyToPem(privateKey); // convert an ASN.1 PrivateKeyInfo or RSAPrivateKey to a Forge private key var privateKey = pki.privateKeyFromAsn1(rsaPrivateKey); // convert a Forge private key to an ASN.1 RSAPrivateKey var rsaPrivateKey = pki.privateKeyToAsn1(privateKey); // wrap an RSAPrivateKey ASN.1 object in a PKCS#8 ASN.1 PrivateKeyInfo var privateKeyInfo = pki.wrapRsaPrivateKey(rsaPrivateKey); // convert a PKCS#8 ASN.1 PrivateKeyInfo to PEM var pem = pki.privateKeyInfoToPem(privateKeyInfo); // encrypts a PrivateKeyInfo and outputs an EncryptedPrivateKeyInfo var encryptedPrivateKeyInfo = pki.encryptPrivateKeyInfo( privateKeyInfo, 'password', { algorithm: 'aes256', // 'aes128', 'aes192', 'aes256', '3des' }); // decrypts an ASN.1 EncryptedPrivateKeyInfo var privateKeyInfo = pki.decryptPrivateKeyInfo( encryptedPrivateKeyInfo, 'password'); // converts an EncryptedPrivateKeyInfo to PEM var pem = pki.encryptedPrivateKeyToPem(encryptedPrivateKeyInfo); // converts a PEM-encoded EncryptedPrivateKeyInfo to ASN.1 format var encryptedPrivateKeyInfo = pki.encryptedPrivateKeyFromPem(pem); // wraps and encrypts a Forge private key and outputs it in PEM format var pem = pki.encryptRsaPrivateKey(privateKey, 'password'); // encrypts a Forge private key and outputs it in PEM format using OpenSSL's // proprietary legacy format + encapsulated PEM headers (DEK-Info) var pem = pki.encryptRsaPrivateKey(privateKey, 'password', {legacy: true}); // decrypts a PEM-formatted, encrypted private key var privateKey = pki.decryptRsaPrivateKey(pem, 'password'); // sets an RSA public key from a private key var publicKey = pki.setRsaPublicKey(privateKey.n, privateKey.e); ``` ### PKCS#10 Provides certification requests or certificate signing requests (CSR) from [PKCS#10][]. __Examples__ ```js // generate a key pair var keys = forge.pki.rsa.generateKeyPair(1024); // create a certification request (CSR) var csr = forge.pki.createCertificationRequest(); csr.publicKey = keys.publicKey; csr.setSubject([{ name: 'commonName', value: 'example.org' }, { name: 'countryName', value: 'US' }, { shortName: 'ST', value: 'Virginia' }, { name: 'localityName', value: 'Blacksburg' }, { name: 'organizationName', value: 'Test' }, { shortName: 'OU', value: 'Test' }]); // set (optional) attributes csr.setAttributes([{ name: 'challengePassword', value: 'password' }, { name: 'unstructuredName', value: 'My Company, Inc.' }, { name: 'extensionRequest', extensions: [{ name: 'subjectAltName', altNames: [{ // 2 is DNS type type: 2, value: 'test.domain.com' }, { type: 2, value: 'other.domain.com', }, { type: 2, value: 'www.domain.net' }] }] }]); // sign certification request csr.sign(keys.privateKey); // verify certification request var verified = csr.verify(); // convert certification request to PEM-format var pem = forge.pki.certificationRequestToPem(csr); // convert a Forge certification request from PEM-format var csr = forge.pki.certificationRequestFromPem(pem); // get an attribute csr.getAttribute({name: 'challengePassword'}); // get extensions array csr.getAttribute({name: 'extensionRequest'}).extensions; ``` ### PKCS#12 Provides the cryptographic archive file format from [PKCS#12][]. __Examples__ ```js // decode p12 from base64 var p12Der = forge.util.decode64(p12b64); // get p12 as ASN.1 object var p12Asn1 = forge.asn1.fromDer(p12Der); // decrypt p12 using the password 'password' var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1, 'password'); // decrypt p12 using non-strict parsing mode (resolves some ASN.1 parse errors) var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1, false, 'password'); // decrypt p12 using literally no password (eg: Mac OS X/apple push) var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1); // decrypt p12 using an "empty" password (eg: OpenSSL with no password input) var p12 = forge.pkcs12.pkcs12FromAsn1(p12Asn1, ''); // p12.safeContents is an array of safe contents, each of // which contains an array of safeBags // get bags by friendlyName var bags = p12.getBags({friendlyName: 'test'}); // bags are key'd by attribute type (here "friendlyName") // and the key values are an array of matching objects var cert = bags.friendlyName[0]; // get bags by localKeyId var bags = p12.getBags({localKeyId: buffer}); // bags are key'd by attribute type (here "localKeyId") // and the key values are an array of matching objects var cert = bags.localKeyId[0]; // get bags by localKeyId (input in hex) var bags = p12.getBags({localKeyIdHex: '7b59377ff142d0be4565e9ac3d396c01401cd879'}); // bags are key'd by attribute type (here "localKeyId", *not* "localKeyIdHex") // and the key values are an array of matching objects var cert = bags.localKeyId[0]; // get bags by type var bags = p12.getBags({bagType: forge.pki.oids.certBag}); // bags are key'd by bagType and each bagType key's value // is an array of matches (in this case, certificate objects) var cert = bags[forge.pki.oids.certBag][0]; // get bags by friendlyName and filter on bag type var bags = p12.getBags({ friendlyName: 'test', bagType: forge.pki.oids.certBag }); // get key bags var bags = p12.getBags({bagType: forge.pki.oids.keyBag}); // get key var bag = bags[forge.pki.oids.keyBag][0]; var key = bag.key; // if the key is in a format unrecognized by forge then // bag.key will be `null`, use bag.asn1 to get the ASN.1 // representation of the key if(bag.key === null) { var keyAsn1 = bag.asn1; // can now convert back to DER/PEM/etc for export } // generate a p12 using AES (default) var p12Asn1 = forge.pkcs12.toPkcs12Asn1( privateKey, certificateChain, 'password'); // generate a p12 that can be imported by Chrome/Firefox // (requires the use of Triple DES instead of AES) var p12Asn1 = forge.pkcs12.toPkcs12Asn1( privateKey, certificateChain, 'password', {algorithm: '3des'}); // base64-encode p12 var p12Der = forge.asn1.toDer(p12Asn1).getBytes(); var p12b64 = forge.util.encode64(p12Der); // create download link for p12 var a = document.createElement('a'); a.download = 'example.p12'; a.setAttribute('href', 'data:application/x-pkcs12;base64,' + p12b64); a.appendChild(document.createTextNode('Download')); ``` ### ASN.1 Provides [ASN.1][] DER encoding and decoding. __Examples__ ```js var asn1 = forge.asn1; // create a SubjectPublicKeyInfo var subjectPublicKeyInfo = asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ // AlgorithmIdentifier asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ // algorithm asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false, asn1.oidToDer(pki.oids['rsaEncryption']).getBytes()), // parameters (null) asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '') ]), // subjectPublicKey asn1.create(asn1.Class.UNIVERSAL, asn1.Type.BITSTRING, false, [ // RSAPublicKey asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [ // modulus (n) asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, _bnToBytes(key.n)), // publicExponent (e) asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false, _bnToBytes(key.e)) ]) ]) ]); // serialize an ASN.1 object to DER format var derBuffer = asn1.toDer(subjectPublicKeyInfo); // deserialize to an ASN.1 object from a byte buffer filled with DER data var object = asn1.fromDer(derBuffer); // convert an OID dot-separated string to a byte buffer var derOidBuffer = asn1.oidToDer('1.2.840.113549.1.1.5'); // convert a byte buffer with a DER-encoded OID to a dot-separated string console.log(asn1.derToDer(derOidBuffer)); // output: 1.2.840.113549.1.1.5 // validates that an ASN.1 object matches a particular ASN.1 structure and // captures data of interest from that structure for easy access var publicKeyValidator = { name: 'SubjectPublicKeyInfo', tagClass: asn1.Class.UNIVERSAL, type: asn1.Type.SEQUENCE, constructed: true, captureAsn1: 'subjectPublicKeyInfo', value: [{ name: 'SubjectPublicKeyInfo.AlgorithmIdentifier', tagClass: asn1.Class.UNIVERSAL, type: asn1.Type.SEQUENCE, constructed: true, value: [{ name: 'AlgorithmIdentifier.algorithm', tagClass: asn1.Class.UNIVERSAL, type: asn1.Type.OID, constructed: false, capture: 'publicKeyOid' }] }, { // subjectPublicKey name: 'SubjectPublicKeyInfo.subjectPublicKey', tagClass: asn1.Class.UNIVERSAL, type: asn1.Type.BITSTRING, constructed: false, value: [{ // RSAPublicKey name: 'SubjectPublicKeyInfo.subjectPublicKey.RSAPublicKey', tagClass: asn1.Class.UNIVERSAL, type: asn1.Type.SEQUENCE, constructed: true, optional: true, captureAsn1: 'rsaPublicKey' }] }] }; var capture = {}; var errors = []; if(!asn1.validate( publicKeyValidator, subjectPublicKeyInfo, validator, capture, errors)) { throw 'ASN.1 object is not a SubjectPublicKeyInfo.'; } // capture.subjectPublicKeyInfo contains the full ASN.1 object // capture.rsaPublicKey contains the full ASN.1 object for the RSA public key // capture.publicKeyOid only contains the value for the OID var oid = asn1.derToOid(capture.publicKeyOid); if(oid !== pki.oids['rsaEncryption']) { throw 'Unsupported OID.'; } // pretty print an ASN.1 object to a string for debugging purposes asn1.prettyPrint(object); ``` --------------------------------------- ## Message Digests ### SHA1 Provides [SHA-1][] message digests. __Examples__ ```js var md = forge.md.sha1.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12 ``` ### SHA256 Provides [SHA-256][] message digests. __Examples__ ```js var md = forge.md.sha256.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592 ``` ### SHA384 Provides [SHA-384][] message digests. __Examples__ ```js var md = forge.md.sha384.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: ca737f1014a48f4c0b6dd43cb177b0afd9e5169367544c494011e3317dbf9a509cb1e5dc1e85a941bbee3d7f2afbc9b1 ``` ### SHA512 Provides [SHA-512][] message digests. __Examples__ ```js // SHA-512 var md = forge.md.sha512.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: 07e547d9586f6a73f73fbac0435ed76951218fb7d0c8d788a309d785436bbb642e93a252a954f23912547d1e8a3b5ed6e1bfd7097821233fa0538f3db854fee6 // SHA-512/224 var md = forge.md.sha512.sha224.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: 944cd2847fb54558d4775db0485a50003111c8e5daa63fe722c6aa37 // SHA-512/256 var md = forge.md.sha512.sha256.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: dd9d67b371519c339ed8dbd25af90e976a1eeefd4ad3d889005e532fc5bef04d ``` ### MD5 Provides [MD5][] message digests. __Examples__ ```js var md = forge.md.md5.create(); md.update('The quick brown fox jumps over the lazy dog'); console.log(md.digest().toHex()); // output: 9e107d9d372bb6826bd81d3542a419d6 ``` ### HMAC Provides [HMAC][] w/any supported message digest algorithm. __Examples__ ```js var hmac = forge.hmac.create(); hmac.start('sha1', 'Jefe'); hmac.update('what do ya want for nothing?'); console.log(hmac.digest().toHex()); // output: effcdf6ae5eb2fa2d27416d5f184df9c259a7c79 ``` --------------------------------------- ## Utilities ### Prime Provides an API for generating large, random, probable primes. __Examples__ ```js // generate a random prime on the main JS thread var bits = 1024; forge.prime.generateProbablePrime(bits, function(err, num) { console.log('random prime', num.toString(16)); }); // generate a random prime using Web Workers (if available, otherwise // falls back to the main thread) var bits = 1024; var options = { algorithm: { name: 'PRIMEINC', workers: -1 // auto-optimize # of workers } }; forge.prime.generateProbablePrime(bits, options, function(err, num) { console.log('random prime', num.toString(16)); }); ``` ### PRNG Provides a [Fortuna][]-based cryptographically-secure pseudo-random number generator, to be used with a cryptographic function backend, e.g. [AES][]. An implementation using [AES][] as a backend is provided. An API for collecting entropy is given, though if window.crypto.getRandomValues is available, it will be used automatically. __Examples__ ```js // get some random bytes synchronously var bytes = forge.random.getBytesSync(32); console.log(forge.util.bytesToHex(bytes)); // get some random bytes asynchronously forge.random.getBytes(32, function(err, bytes) { console.log(forge.util.bytesToHex(bytes)); }); // collect some entropy if you'd like forge.random.collect(someRandomBytes); jQuery().mousemove(function(e) { forge.random.collectInt(e.clientX, 16); forge.random.collectInt(e.clientY, 16); }); // specify a seed file for use with the synchronous API if you'd like forge.random.seedFileSync = function(needed) { // get 'needed' number of random bytes from somewhere return fetchedRandomBytes; }; // specify a seed file for use with the asynchronous API if you'd like forge.random.seedFile = function(needed, callback) { // get the 'needed' number of random bytes from somewhere callback(null, fetchedRandomBytes); }); // register the main thread to send entropy or a Web Worker to receive // entropy on demand from the main thread forge.random.registerWorker(self); // generate a new instance of a PRNG with no collected entropy var myPrng = forge.random.createInstance(); ``` ### Tasks Provides queuing and synchronizing tasks in a web application. __Examples__ ```js ``` ### Utilities Provides utility functions, including byte buffer support, base64, bytes to/from hex, zlib inflate/deflate, etc. __Examples__ ```js // encode/decode base64 var encoded = forge.util.encode64(str); var str = forge.util.decode64(encoded); // encode/decode UTF-8 var encoded = forge.util.encodeUtf8(str); var str = forge.util.decodeUtf8(encoded); // bytes to/from hex var bytes = forge.util.hexToBytes(hex); var hex = forge.util.bytesToHex(bytes); // create an empty byte buffer var buffer = forge.util.createBuffer(); // create a byte buffer from raw binary bytes var buffer = forge.util.createBuffer(input, 'raw'); // create a byte buffer from utf8 bytes var buffer = forge.util.createBuffer(input, 'utf8'); // get the length of the buffer in bytes buffer.length(); // put bytes into the buffer buffer.putBytes(bytes); // put a 32-bit integer into the buffer buffer.putInt32(10); // buffer to hex buffer.toHex(); // get a copy of the bytes in the buffer bytes.bytes(/* count */); // empty this buffer and get its contents bytes.getBytes(/* count */); // convert a forge buffer into a node.js Buffer // make sure you specify the encoding as 'binary' var forgeBuffer = forge.util.createBuffer(); var nodeBuffer = new Buffer(forgeBuffer.getBytes(), 'binary'); // convert a node.js Buffer into a forge buffer // make sure you specify the encoding as 'binary' var nodeBuffer = new Buffer(); var forgeBuffer = forge.util.createBuffer(nodeBuffer.toString('binary')); // parse a URL var parsed = forge.util.parseUrl('http://example.com/foo?bar=baz'); // parsed.scheme, parsed.host, parsed.port, parsed.path, parsed.fullHost ``` ### Logging Provides logging to a javascript console using various categories and levels of verbosity. __Examples__ ```js ``` ### Debugging Provides storage of debugging information normally inaccessible in closures for viewing/investigation. __Examples__ ```js ``` ### Flash Socket Policy Module Provides an [Apache][] module "mod_fsp" that can serve up a Flash Socket Policy. See `mod_fsp/README` for more details. This module makes it easy to modify an [Apache][] server to allow cross domain requests to be made to it. Library Details --------------- * http://digitalbazaar.com/2010/07/20/javascript-tls-1/ * http://digitalbazaar.com/2010/07/20/javascript-tls-2/ Contact ------- * Code: https://github.com/digitalbazaar/forge * Bugs: https://github.com/digitalbazaar/forge/issues * Email: support@digitalbazaar.com Donations welcome: * Donate: paypal@digitalbazaar.com [AES]: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard [ASN.1]: http://en.wikipedia.org/wiki/ASN.1 [Apache]: http://httpd.apache.org/ [CFB]: http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation [CBC]: http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation [CTR]: http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation [3DES]: http://en.wikipedia.org/wiki/Triple_DES [DES]: http://en.wikipedia.org/wiki/Data_Encryption_Standard [ECB]: http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation [Fortuna]: http://en.wikipedia.org/wiki/Fortuna_(PRNG) [GCM]: http://en.wikipedia.org/wiki/GCM_mode [HMAC]: http://en.wikipedia.org/wiki/HMAC [JavaScript]: http://en.wikipedia.org/wiki/JavaScript [MD5]: http://en.wikipedia.org/wiki/MD5 [OFB]: http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation [PKCS#5]: http://en.wikipedia.org/wiki/PKCS [PKCS#7]: http://en.wikipedia.org/wiki/Cryptographic_Message_Syntax [PKCS#10]: http://en.wikipedia.org/wiki/Certificate_signing_request [PKCS#12]: http://en.wikipedia.org/wiki/PKCS_%E2%99%AF12 [RC2]: http://en.wikipedia.org/wiki/RC2 [SHA-1]: http://en.wikipedia.org/wiki/SHA-1 [SHA-256]: http://en.wikipedia.org/wiki/SHA-256 [SHA-384]: http://en.wikipedia.org/wiki/SHA-384 [SHA-512]: http://en.wikipedia.org/wiki/SHA-512 [TLS]: http://en.wikipedia.org/wiki/Transport_Layer_Security [X.509]: http://en.wikipedia.org/wiki/X.509 [node.js]: http://nodejs.org/