From 3d1cd02f27518f1a04374c7c8320cd5d82ede6e9 Mon Sep 17 00:00:00 2001 From: Minteck Date: Thu, 23 Feb 2023 19:34:56 +0100 Subject: Updated 40 files, added 37 files, deleted 1103 files and renamed 3905 files (automated) --- school/node_modules/node-forge/js/cipherModes.js | 1049 ---------------------- 1 file changed, 1049 deletions(-) delete mode 100644 school/node_modules/node-forge/js/cipherModes.js (limited to 'school/node_modules/node-forge/js/cipherModes.js') diff --git a/school/node_modules/node-forge/js/cipherModes.js b/school/node_modules/node-forge/js/cipherModes.js deleted file mode 100644 index 2d64211..0000000 --- a/school/node_modules/node-forge/js/cipherModes.js +++ /dev/null @@ -1,1049 +0,0 @@ -/** - * Supported cipher modes. - * - * @author Dave Longley - * - * Copyright (c) 2010-2014 Digital Bazaar, Inc. - */ -(function() { -/* ########## Begin module implementation ########## */ -function initModule(forge) { - -forge.cipher = forge.cipher || {}; - -// supported cipher modes -var modes = forge.cipher.modes = forge.cipher.modes || {}; - - -/** Electronic codebook (ECB) (Don't use this; it's not secure) **/ - -modes.ecb = function(options) { - options = options || {}; - this.name = 'ECB'; - this.cipher = options.cipher; - this.blockSize = options.blockSize || 16; - this._ints = this.blockSize / 4; - this._inBlock = new Array(this._ints); - this._outBlock = new Array(this._ints); -}; - -modes.ecb.prototype.start = function(options) {}; - -modes.ecb.prototype.encrypt = function(input, output, finish) { - // not enough input to encrypt - if(input.length() < this.blockSize && !(finish && input.length() > 0)) { - return true; - } - - // get next block - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = input.getInt32(); - } - - // encrypt block - this.cipher.encrypt(this._inBlock, this._outBlock); - - // write output - for(var i = 0; i < this._ints; ++i) { - output.putInt32(this._outBlock[i]); - } -}; - -modes.ecb.prototype.decrypt = function(input, output, finish) { - // not enough input to decrypt - if(input.length() < this.blockSize && !(finish && input.length() > 0)) { - return true; - } - - // get next block - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = input.getInt32(); - } - - // decrypt block - this.cipher.decrypt(this._inBlock, this._outBlock); - - // write output - for(var i = 0; i < this._ints; ++i) { - output.putInt32(this._outBlock[i]); - } -}; - -modes.ecb.prototype.pad = function(input, options) { - // add PKCS#7 padding to block (each pad byte is the - // value of the number of pad bytes) - var padding = (input.length() === this.blockSize ? - this.blockSize : (this.blockSize - input.length())); - input.fillWithByte(padding, padding); - return true; -}; - -modes.ecb.prototype.unpad = function(output, options) { - // check for error: input data not a multiple of blockSize - if(options.overflow > 0) { - return false; - } - - // ensure padding byte count is valid - var len = output.length(); - var count = output.at(len - 1); - if(count > (this.blockSize << 2)) { - return false; - } - - // trim off padding bytes - output.truncate(count); - return true; -}; - - -/** Cipher-block Chaining (CBC) **/ - -modes.cbc = function(options) { - options = options || {}; - this.name = 'CBC'; - this.cipher = options.cipher; - this.blockSize = options.blockSize || 16; - this._ints = this.blockSize / 4; - this._inBlock = new Array(this._ints); - this._outBlock = new Array(this._ints); -}; - -modes.cbc.prototype.start = function(options) { - // Note: legacy support for using IV residue (has security flaws) - // if IV is null, reuse block from previous processing - if(options.iv === null) { - // must have a previous block - if(!this._prev) { - throw new Error('Invalid IV parameter.'); - } - this._iv = this._prev.slice(0); - } else if(!('iv' in options)) { - throw new Error('Invalid IV parameter.'); - } else { - // save IV as "previous" block - this._iv = transformIV(options.iv); - this._prev = this._iv.slice(0); - } -}; - -modes.cbc.prototype.encrypt = function(input, output, finish) { - // not enough input to encrypt - if(input.length() < this.blockSize && !(finish && input.length() > 0)) { - return true; - } - - // get next block - // CBC XOR's IV (or previous block) with plaintext - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = this._prev[i] ^ input.getInt32(); - } - - // encrypt block - this.cipher.encrypt(this._inBlock, this._outBlock); - - // write output, save previous block - for(var i = 0; i < this._ints; ++i) { - output.putInt32(this._outBlock[i]); - } - this._prev = this._outBlock; -}; - -modes.cbc.prototype.decrypt = function(input, output, finish) { - // not enough input to decrypt - if(input.length() < this.blockSize && !(finish && input.length() > 0)) { - return true; - } - - // get next block - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = input.getInt32(); - } - - // decrypt block - this.cipher.decrypt(this._inBlock, this._outBlock); - - // write output, save previous ciphered block - // CBC XOR's IV (or previous block) with ciphertext - for(var i = 0; i < this._ints; ++i) { - output.putInt32(this._prev[i] ^ this._outBlock[i]); - } - this._prev = this._inBlock.slice(0); -}; - -modes.cbc.prototype.pad = function(input, options) { - // add PKCS#7 padding to block (each pad byte is the - // value of the number of pad bytes) - var padding = (input.length() === this.blockSize ? - this.blockSize : (this.blockSize - input.length())); - input.fillWithByte(padding, padding); - return true; -}; - -modes.cbc.prototype.unpad = function(output, options) { - // check for error: input data not a multiple of blockSize - if(options.overflow > 0) { - return false; - } - - // ensure padding byte count is valid - var len = output.length(); - var count = output.at(len - 1); - if(count > (this.blockSize << 2)) { - return false; - } - - // trim off padding bytes - output.truncate(count); - return true; -}; - - -/** Cipher feedback (CFB) **/ - -modes.cfb = function(options) { - options = options || {}; - this.name = 'CFB'; - this.cipher = options.cipher; - this.blockSize = options.blockSize || 16; - this._ints = this.blockSize / 4; - this._inBlock = null; - this._outBlock = new Array(this._ints); - this._partialBlock = new Array(this._ints); - this._partialOutput = forge.util.createBuffer(); - this._partialBytes = 0; -}; - -modes.cfb.prototype.start = function(options) { - if(!('iv' in options)) { - throw new Error('Invalid IV parameter.'); - } - // use IV as first input - this._iv = transformIV(options.iv); - this._inBlock = this._iv.slice(0); - this._partialBytes = 0; -}; - -modes.cfb.prototype.encrypt = function(input, output, finish) { - // not enough input to encrypt - var inputLength = input.length(); - if(inputLength === 0) { - return true; - } - - // encrypt block - this.cipher.encrypt(this._inBlock, this._outBlock); - - // handle full block - if(this._partialBytes === 0 && inputLength >= this.blockSize) { - // XOR input with output, write input as output - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = input.getInt32() ^ this._outBlock[i]; - output.putInt32(this._inBlock[i]); - } - return; - } - - // handle partial block - var partialBytes = (this.blockSize - inputLength) % this.blockSize; - if(partialBytes > 0) { - partialBytes = this.blockSize - partialBytes; - } - - // XOR input with output, write input as partial output - this._partialOutput.clear(); - for(var i = 0; i < this._ints; ++i) { - this._partialBlock[i] = input.getInt32() ^ this._outBlock[i]; - this._partialOutput.putInt32(this._partialBlock[i]); - } - - if(partialBytes > 0) { - // block still incomplete, restore input buffer - input.read -= this.blockSize; - } else { - // block complete, update input block - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = this._partialBlock[i]; - } - } - - // skip any previous partial bytes - if(this._partialBytes > 0) { - this._partialOutput.getBytes(this._partialBytes); - } - - if(partialBytes > 0 && !finish) { - output.putBytes(this._partialOutput.getBytes( - partialBytes - this._partialBytes)); - this._partialBytes = partialBytes; - return true; - } - - output.putBytes(this._partialOutput.getBytes( - inputLength - this._partialBytes)); - this._partialBytes = 0; -}; - -modes.cfb.prototype.decrypt = function(input, output, finish) { - // not enough input to decrypt - var inputLength = input.length(); - if(inputLength === 0) { - return true; - } - - // encrypt block (CFB always uses encryption mode) - this.cipher.encrypt(this._inBlock, this._outBlock); - - // handle full block - if(this._partialBytes === 0 && inputLength >= this.blockSize) { - // XOR input with output, write input as output - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = input.getInt32(); - output.putInt32(this._inBlock[i] ^ this._outBlock[i]); - } - return; - } - - // handle partial block - var partialBytes = (this.blockSize - inputLength) % this.blockSize; - if(partialBytes > 0) { - partialBytes = this.blockSize - partialBytes; - } - - // XOR input with output, write input as partial output - this._partialOutput.clear(); - for(var i = 0; i < this._ints; ++i) { - this._partialBlock[i] = input.getInt32(); - this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]); - } - - if(partialBytes > 0) { - // block still incomplete, restore input buffer - input.read -= this.blockSize; - } else { - // block complete, update input block - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = this._partialBlock[i]; - } - } - - // skip any previous partial bytes - if(this._partialBytes > 0) { - this._partialOutput.getBytes(this._partialBytes); - } - - if(partialBytes > 0 && !finish) { - output.putBytes(this._partialOutput.getBytes( - partialBytes - this._partialBytes)); - this._partialBytes = partialBytes; - return true; - } - - output.putBytes(this._partialOutput.getBytes( - inputLength - this._partialBytes)); - this._partialBytes = 0; -}; - -/** Output feedback (OFB) **/ - -modes.ofb = function(options) { - options = options || {}; - this.name = 'OFB'; - this.cipher = options.cipher; - this.blockSize = options.blockSize || 16; - this._ints = this.blockSize / 4; - this._inBlock = null; - this._outBlock = new Array(this._ints); - this._partialOutput = forge.util.createBuffer(); - this._partialBytes = 0; -}; - -modes.ofb.prototype.start = function(options) { - if(!('iv' in options)) { - throw new Error('Invalid IV parameter.'); - } - // use IV as first input - this._iv = transformIV(options.iv); - this._inBlock = this._iv.slice(0); - this._partialBytes = 0; -}; - -modes.ofb.prototype.encrypt = function(input, output, finish) { - // not enough input to encrypt - var inputLength = input.length(); - if(input.length() === 0) { - return true; - } - - // encrypt block (OFB always uses encryption mode) - this.cipher.encrypt(this._inBlock, this._outBlock); - - // handle full block - if(this._partialBytes === 0 && inputLength >= this.blockSize) { - // XOR input with output and update next input - for(var i = 0; i < this._ints; ++i) { - output.putInt32(input.getInt32() ^ this._outBlock[i]); - this._inBlock[i] = this._outBlock[i]; - } - return; - } - - // handle partial block - var partialBytes = (this.blockSize - inputLength) % this.blockSize; - if(partialBytes > 0) { - partialBytes = this.blockSize - partialBytes; - } - - // XOR input with output - this._partialOutput.clear(); - for(var i = 0; i < this._ints; ++i) { - this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); - } - - if(partialBytes > 0) { - // block still incomplete, restore input buffer - input.read -= this.blockSize; - } else { - // block complete, update input block - for(var i = 0; i < this._ints; ++i) { - this._inBlock[i] = this._outBlock[i]; - } - } - - // skip any previous partial bytes - if(this._partialBytes > 0) { - this._partialOutput.getBytes(this._partialBytes); - } - - if(partialBytes > 0 && !finish) { - output.putBytes(this._partialOutput.getBytes( - partialBytes - this._partialBytes)); - this._partialBytes = partialBytes; - return true; - } - - output.putBytes(this._partialOutput.getBytes( - inputLength - this._partialBytes)); - this._partialBytes = 0; -}; - -modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt; - - -/** Counter (CTR) **/ - -modes.ctr = function(options) { - options = options || {}; - this.name = 'CTR'; - this.cipher = options.cipher; - this.blockSize = options.blockSize || 16; - this._ints = this.blockSize / 4; - this._inBlock = null; - this._outBlock = new Array(this._ints); - this._partialOutput = forge.util.createBuffer(); - this._partialBytes = 0; -}; - -modes.ctr.prototype.start = function(options) { - if(!('iv' in options)) { - throw new Error('Invalid IV parameter.'); - } - // use IV as first input - this._iv = transformIV(options.iv); - this._inBlock = this._iv.slice(0); - this._partialBytes = 0; -}; - -modes.ctr.prototype.encrypt = function(input, output, finish) { - // not enough input to encrypt - var inputLength = input.length(); - if(inputLength === 0) { - return true; - } - - // encrypt block (CTR always uses encryption mode) - this.cipher.encrypt(this._inBlock, this._outBlock); - - // handle full block - if(this._partialBytes === 0 && inputLength >= this.blockSize) { - // XOR input with output - for(var i = 0; i < this._ints; ++i) { - output.putInt32(input.getInt32() ^ this._outBlock[i]); - } - } else { - // handle partial block - var partialBytes = (this.blockSize - inputLength) % this.blockSize; - if(partialBytes > 0) { - partialBytes = this.blockSize - partialBytes; - } - - // XOR input with output - this._partialOutput.clear(); - for(var i = 0; i < this._ints; ++i) { - this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); - } - - if(partialBytes > 0) { - // block still incomplete, restore input buffer - input.read -= this.blockSize; - } - - // skip any previous partial bytes - if(this._partialBytes > 0) { - this._partialOutput.getBytes(this._partialBytes); - } - - if(partialBytes > 0 && !finish) { - output.putBytes(this._partialOutput.getBytes( - partialBytes - this._partialBytes)); - this._partialBytes = partialBytes; - return true; - } - - output.putBytes(this._partialOutput.getBytes( - inputLength - this._partialBytes)); - this._partialBytes = 0; - } - - // block complete, increment counter (input block) - inc32(this._inBlock); -}; - -modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt; - - -/** Galois/Counter Mode (GCM) **/ - -modes.gcm = function(options) { - options = options || {}; - this.name = 'GCM'; - this.cipher = options.cipher; - this.blockSize = options.blockSize || 16; - this._ints = this.blockSize / 4; - this._inBlock = new Array(this._ints); - this._outBlock = new Array(this._ints); - this._partialOutput = forge.util.createBuffer(); - this._partialBytes = 0; - - // R is actually this value concatenated with 120 more zero bits, but - // we only XOR against R so the other zeros have no effect -- we just - // apply this value to the first integer in a block - this._R = 0xE1000000; -}; - -modes.gcm.prototype.start = function(options) { - if(!('iv' in options)) { - throw new Error('Invalid IV parameter.'); - } - // ensure IV is a byte buffer - var iv = forge.util.createBuffer(options.iv); - - // no ciphered data processed yet - this._cipherLength = 0; - - // default additional data is none - var additionalData; - if('additionalData' in options) { - additionalData = forge.util.createBuffer(options.additionalData); - } else { - additionalData = forge.util.createBuffer(); - } - - // default tag length is 128 bits - if('tagLength' in options) { - this._tagLength = options.tagLength; - } else { - this._tagLength = 128; - } - - // if tag is given, ensure tag matches tag length - this._tag = null; - if(options.decrypt) { - // save tag to check later - this._tag = forge.util.createBuffer(options.tag).getBytes(); - if(this._tag.length !== (this._tagLength / 8)) { - throw new Error('Authentication tag does not match tag length.'); - } - } - - // create tmp storage for hash calculation - this._hashBlock = new Array(this._ints); - - // no tag generated yet - this.tag = null; - - // generate hash subkey - // (apply block cipher to "zero" block) - this._hashSubkey = new Array(this._ints); - this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey); - - // generate table M - // use 4-bit tables (32 component decomposition of a 16 byte value) - // 8-bit tables take more space and are known to have security - // vulnerabilities (in native implementations) - this.componentBits = 4; - this._m = this.generateHashTable(this._hashSubkey, this.componentBits); - - // Note: support IV length different from 96 bits? (only supporting - // 96 bits is recommended by NIST SP-800-38D) - // generate J_0 - var ivLength = iv.length(); - if(ivLength === 12) { - // 96-bit IV - this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1]; - } else { - // IV is NOT 96-bits - this._j0 = [0, 0, 0, 0]; - while(iv.length() > 0) { - this._j0 = this.ghash( - this._hashSubkey, this._j0, - [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]); - } - this._j0 = this.ghash( - this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8))); - } - - // generate ICB (initial counter block) - this._inBlock = this._j0.slice(0); - inc32(this._inBlock); - this._partialBytes = 0; - - // consume authentication data - additionalData = forge.util.createBuffer(additionalData); - // save additional data length as a BE 64-bit number - this._aDataLength = from64To32(additionalData.length() * 8); - // pad additional data to 128 bit (16 byte) block size - var overflow = additionalData.length() % this.blockSize; - if(overflow) { - additionalData.fillWithByte(0, this.blockSize - overflow); - } - this._s = [0, 0, 0, 0]; - while(additionalData.length() > 0) { - this._s = this.ghash(this._hashSubkey, this._s, [ - additionalData.getInt32(), - additionalData.getInt32(), - additionalData.getInt32(), - additionalData.getInt32() - ]); - } -}; - -modes.gcm.prototype.encrypt = function(input, output, finish) { - // not enough input to encrypt - var inputLength = input.length(); - if(inputLength === 0) { - return true; - } - - // encrypt block - this.cipher.encrypt(this._inBlock, this._outBlock); - - // handle full block - if(this._partialBytes === 0 && inputLength >= this.blockSize) { - // XOR input with output - for(var i = 0; i < this._ints; ++i) { - output.putInt32(this._outBlock[i] ^= input.getInt32()); - } - this._cipherLength += this.blockSize; - } else { - // handle partial block - var partialBytes = (this.blockSize - inputLength) % this.blockSize; - if(partialBytes > 0) { - partialBytes = this.blockSize - partialBytes; - } - - // XOR input with output - this._partialOutput.clear(); - for(var i = 0; i < this._ints; ++i) { - this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]); - } - - if(partialBytes === 0 || finish) { - // handle overflow prior to hashing - if(finish) { - // get block overflow - var overflow = inputLength % this.blockSize; - this._cipherLength += overflow; - // truncate for hash function - this._partialOutput.truncate(this.blockSize - overflow); - } else { - this._cipherLength += this.blockSize; - } - - // get output block for hashing - for(var i = 0; i < this._ints; ++i) { - this._outBlock[i] = this._partialOutput.getInt32(); - } - this._partialOutput.read -= this.blockSize; - } - - // skip any previous partial bytes - if(this._partialBytes > 0) { - this._partialOutput.getBytes(this._partialBytes); - } - - if(partialBytes > 0 && !finish) { - // block still incomplete, restore input buffer, get partial output, - // and return early - input.read -= this.blockSize; - output.putBytes(this._partialOutput.getBytes( - partialBytes - this._partialBytes)); - this._partialBytes = partialBytes; - return true; - } - - output.putBytes(this._partialOutput.getBytes( - inputLength - this._partialBytes)); - this._partialBytes = 0; - } - - // update hash block S - this._s = this.ghash(this._hashSubkey, this._s, this._outBlock); - - // increment counter (input block) - inc32(this._inBlock); -}; - -modes.gcm.prototype.decrypt = function(input, output, finish) { - // not enough input to decrypt - var inputLength = input.length(); - if(inputLength < this.blockSize && !(finish && inputLength > 0)) { - return true; - } - - // encrypt block (GCM always uses encryption mode) - this.cipher.encrypt(this._inBlock, this._outBlock); - - // increment counter (input block) - inc32(this._inBlock); - - // update hash block S - this._hashBlock[0] = input.getInt32(); - this._hashBlock[1] = input.getInt32(); - this._hashBlock[2] = input.getInt32(); - this._hashBlock[3] = input.getInt32(); - this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock); - - // XOR hash input with output - for(var i = 0; i < this._ints; ++i) { - output.putInt32(this._outBlock[i] ^ this._hashBlock[i]); - } - - // increment cipher data length - if(inputLength < this.blockSize) { - this._cipherLength += inputLength % this.blockSize; - } else { - this._cipherLength += this.blockSize; - } -}; - -modes.gcm.prototype.afterFinish = function(output, options) { - var rval = true; - - // handle overflow - if(options.decrypt && options.overflow) { - output.truncate(this.blockSize - options.overflow); - } - - // handle authentication tag - this.tag = forge.util.createBuffer(); - - // concatenate additional data length with cipher length - var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8)); - - // include lengths in hash - this._s = this.ghash(this._hashSubkey, this._s, lengths); - - // do GCTR(J_0, S) - var tag = []; - this.cipher.encrypt(this._j0, tag); - for(var i = 0; i < this._ints; ++i) { - this.tag.putInt32(this._s[i] ^ tag[i]); - } - - // trim tag to length - this.tag.truncate(this.tag.length() % (this._tagLength / 8)); - - // check authentication tag - if(options.decrypt && this.tag.bytes() !== this._tag) { - rval = false; - } - - return rval; -}; - -/** - * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois - * field multiplication. The field, GF(2^128), is defined by the polynomial: - * - * x^128 + x^7 + x^2 + x + 1 - * - * Which is represented in little-endian binary form as: 11100001 (0xe1). When - * the value of a coefficient is 1, a bit is set. The value R, is the - * concatenation of this value and 120 zero bits, yielding a 128-bit value - * which matches the block size. - * - * This function will multiply two elements (vectors of bytes), X and Y, in - * the field GF(2^128). The result is initialized to zero. For each bit of - * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd) - * by the current value of Y. For each bit, the value of Y will be raised by - * a power of x (multiplied by the polynomial x). This can be achieved by - * shifting Y once to the right. If the current value of Y, prior to being - * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial. - * Otherwise, we must divide by R after shifting to find the remainder. - * - * @param x the first block to multiply by the second. - * @param y the second block to multiply by the first. - * - * @return the block result of the multiplication. - */ -modes.gcm.prototype.multiply = function(x, y) { - var z_i = [0, 0, 0, 0]; - var v_i = y.slice(0); - - // calculate Z_128 (block has 128 bits) - for(var i = 0; i < 128; ++i) { - // if x_i is 0, Z_{i+1} = Z_i (unchanged) - // else Z_{i+1} = Z_i ^ V_i - // get x_i by finding 32-bit int position, then left shift 1 by remainder - var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32)); - if(x_i) { - z_i[0] ^= v_i[0]; - z_i[1] ^= v_i[1]; - z_i[2] ^= v_i[2]; - z_i[3] ^= v_i[3]; - } - - // if LSB(V_i) is 1, V_i = V_i >> 1 - // else V_i = (V_i >> 1) ^ R - this.pow(v_i, v_i); - } - - return z_i; -}; - -modes.gcm.prototype.pow = function(x, out) { - // if LSB(x) is 1, x = x >>> 1 - // else x = (x >>> 1) ^ R - var lsb = x[3] & 1; - - // always do x >>> 1: - // starting with the rightmost integer, shift each integer to the right - // one bit, pulling in the bit from the integer to the left as its top - // most bit (do this for the last 3 integers) - for(var i = 3; i > 0; --i) { - out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31); - } - // shift the first integer normally - out[0] = x[0] >>> 1; - - // if lsb was not set, then polynomial had a degree of 127 and doesn't - // need to divided; otherwise, XOR with R to find the remainder; we only - // need to XOR the first integer since R technically ends w/120 zero bits - if(lsb) { - out[0] ^= this._R; - } -}; - -modes.gcm.prototype.tableMultiply = function(x) { - // assumes 4-bit tables are used - var z = [0, 0, 0, 0]; - for(var i = 0; i < 32; ++i) { - var idx = (i / 8) | 0; - var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF; - var ah = this._m[i][x_i]; - z[0] ^= ah[0]; - z[1] ^= ah[1]; - z[2] ^= ah[2]; - z[3] ^= ah[3]; - } - return z; -}; - -/** - * A continuing version of the GHASH algorithm that operates on a single - * block. The hash block, last hash value (Ym) and the new block to hash - * are given. - * - * @param h the hash block. - * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash. - * @param x the block to hash. - * - * @return the hashed value (Ym). - */ -modes.gcm.prototype.ghash = function(h, y, x) { - y[0] ^= x[0]; - y[1] ^= x[1]; - y[2] ^= x[2]; - y[3] ^= x[3]; - return this.tableMultiply(y); - //return this.multiply(y, h); -}; - -/** - * Precomputes a table for multiplying against the hash subkey. This - * mechanism provides a substantial speed increase over multiplication - * performed without a table. The table-based multiplication this table is - * for solves X * H by multiplying each component of X by H and then - * composing the results together using XOR. - * - * This function can be used to generate tables with different bit sizes - * for the components, however, this implementation assumes there are - * 32 components of X (which is a 16 byte vector), therefore each component - * takes 4-bits (so the table is constructed with bits=4). - * - * @param h the hash subkey. - * @param bits the bit size for a component. - */ -modes.gcm.prototype.generateHashTable = function(h, bits) { - // TODO: There are further optimizations that would use only the - // first table M_0 (or some variant) along with a remainder table; - // this can be explored in the future - var multiplier = 8 / bits; - var perInt = 4 * multiplier; - var size = 16 * multiplier; - var m = new Array(size); - for(var i = 0; i < size; ++i) { - var tmp = [0, 0, 0, 0]; - var idx = (i / perInt) | 0; - var shft = ((perInt - 1 - (i % perInt)) * bits); - tmp[idx] = (1 << (bits - 1)) << shft; - m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits); - } - return m; -}; - -/** - * Generates a table for multiplying against the hash subkey for one - * particular component (out of all possible component values). - * - * @param mid the pre-multiplied value for the middle key of the table. - * @param bits the bit size for a component. - */ -modes.gcm.prototype.generateSubHashTable = function(mid, bits) { - // compute the table quickly by minimizing the number of - // POW operations -- they only need to be performed for powers of 2, - // all other entries can be composed from those powers using XOR - var size = 1 << bits; - var half = size >>> 1; - var m = new Array(size); - m[half] = mid.slice(0); - var i = half >>> 1; - while(i > 0) { - // raise m0[2 * i] and store in m0[i] - this.pow(m[2 * i], m[i] = []); - i >>= 1; - } - i = 2; - while(i < half) { - for(var j = 1; j < i; ++j) { - var m_i = m[i]; - var m_j = m[j]; - m[i + j] = [ - m_i[0] ^ m_j[0], - m_i[1] ^ m_j[1], - m_i[2] ^ m_j[2], - m_i[3] ^ m_j[3] - ]; - } - i *= 2; - } - m[0] = [0, 0, 0, 0]; - /* Note: We could avoid storing these by doing composition during multiply - calculate top half using composition by speed is preferred. */ - for(i = half + 1; i < size; ++i) { - var c = m[i ^ half]; - m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]]; - } - return m; -}; - - -/** Utility functions */ - -function transformIV(iv) { - if(typeof iv === 'string') { - // convert iv string into byte buffer - iv = forge.util.createBuffer(iv); - } - - if(forge.util.isArray(iv) && iv.length > 4) { - // convert iv byte array into byte buffer - var tmp = iv; - iv = forge.util.createBuffer(); - for(var i = 0; i < tmp.length; ++i) { - iv.putByte(tmp[i]); - } - } - if(!forge.util.isArray(iv)) { - // convert iv byte buffer into 32-bit integer array - iv = [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]; - } - - return iv; -} - -function inc32(block) { - // increment last 32 bits of block only - block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF; -} - -function from64To32(num) { - // convert 64-bit number to two BE Int32s - return [(num / 0x100000000) | 0, num & 0xFFFFFFFF]; -} - - -} // end module implementation - -/* ########## Begin module wrapper ########## */ -var name = 'cipherModes'; -if(typeof define !== 'function') { - // NodeJS -> AMD - if(typeof module === 'object' && module.exports) { - var nodeJS = true; - define = function(ids, factory) { - factory(require, module); - }; - } else { - //