From 99c1d9af689e5325f3cf535c4007b3aeb8325229 Mon Sep 17 00:00:00 2001 From: Minteck <contact@minteck.org> Date: Tue, 10 Jan 2023 14:54:04 +0100 Subject: Update - This is an automated commit --- alarm/node_modules/node-forge/js/tls.js | 4316 ------------------------------- 1 file changed, 4316 deletions(-) delete mode 100644 alarm/node_modules/node-forge/js/tls.js (limited to 'alarm/node_modules/node-forge/js/tls.js') diff --git a/alarm/node_modules/node-forge/js/tls.js b/alarm/node_modules/node-forge/js/tls.js deleted file mode 100644 index b3bb2e8..0000000 --- a/alarm/node_modules/node-forge/js/tls.js +++ /dev/null @@ -1,4316 +0,0 @@ -/** - * A Javascript implementation of Transport Layer Security (TLS). - * - * @author Dave Longley - * - * Copyright (c) 2009-2014 Digital Bazaar, Inc. - * - * The TLS Handshake Protocol involves the following steps: - * - * - Exchange hello messages to agree on algorithms, exchange random values, - * and check for session resumption. - * - * - Exchange the necessary cryptographic parameters to allow the client and - * server to agree on a premaster secret. - * - * - Exchange certificates and cryptographic information to allow the client - * and server to authenticate themselves. - * - * - Generate a master secret from the premaster secret and exchanged random - * values. - * - * - Provide security parameters to the record layer. - * - * - Allow the client and server to verify that their peer has calculated the - * same security parameters and that the handshake occurred without tampering - * by an attacker. - * - * Up to 4 different messages may be sent during a key exchange. The server - * certificate, the server key exchange, the client certificate, and the - * client key exchange. - * - * A typical handshake (from the client's perspective). - * - * 1. Client sends ClientHello. - * 2. Client receives ServerHello. - * 3. Client receives optional Certificate. - * 4. Client receives optional ServerKeyExchange. - * 5. Client receives ServerHelloDone. - * 6. Client sends optional Certificate. - * 7. Client sends ClientKeyExchange. - * 8. Client sends optional CertificateVerify. - * 9. Client sends ChangeCipherSpec. - * 10. Client sends Finished. - * 11. Client receives ChangeCipherSpec. - * 12. Client receives Finished. - * 13. Client sends/receives application data. - * - * To reuse an existing session: - * - * 1. Client sends ClientHello with session ID for reuse. - * 2. Client receives ServerHello with same session ID if reusing. - * 3. Client receives ChangeCipherSpec message if reusing. - * 4. Client receives Finished. - * 5. Client sends ChangeCipherSpec. - * 6. Client sends Finished. - * - * Note: Client ignores HelloRequest if in the middle of a handshake. - * - * Record Layer: - * - * The record layer fragments information blocks into TLSPlaintext records - * carrying data in chunks of 2^14 bytes or less. Client message boundaries are - * not preserved in the record layer (i.e., multiple client messages of the - * same ContentType MAY be coalesced into a single TLSPlaintext record, or a - * single message MAY be fragmented across several records). - * - * struct { - * uint8 major; - * uint8 minor; - * } ProtocolVersion; - * - * struct { - * ContentType type; - * ProtocolVersion version; - * uint16 length; - * opaque fragment[TLSPlaintext.length]; - * } TLSPlaintext; - * - * type: - * The higher-level protocol used to process the enclosed fragment. - * - * version: - * The version of the protocol being employed. TLS Version 1.2 uses version - * {3, 3}. TLS Version 1.0 uses version {3, 1}. Note that a client that - * supports multiple versions of TLS may not know what version will be - * employed before it receives the ServerHello. - * - * length: - * The length (in bytes) of the following TLSPlaintext.fragment. The length - * MUST NOT exceed 2^14 = 16384 bytes. - * - * fragment: - * The application data. This data is transparent and treated as an - * independent block to be dealt with by the higher-level protocol specified - * by the type field. - * - * Implementations MUST NOT send zero-length fragments of Handshake, Alert, or - * ChangeCipherSpec content types. Zero-length fragments of Application data - * MAY be sent as they are potentially useful as a traffic analysis - * countermeasure. - * - * Note: Data of different TLS record layer content types MAY be interleaved. - * Application data is generally of lower precedence for transmission than - * other content types. However, records MUST be delivered to the network in - * the same order as they are protected by the record layer. Recipients MUST - * receive and process interleaved application layer traffic during handshakes - * subsequent to the first one on a connection. - * - * struct { - * ContentType type; // same as TLSPlaintext.type - * ProtocolVersion version;// same as TLSPlaintext.version - * uint16 length; - * opaque fragment[TLSCompressed.length]; - * } TLSCompressed; - * - * length: - * The length (in bytes) of the following TLSCompressed.fragment. - * The length MUST NOT exceed 2^14 + 1024. - * - * fragment: - * The compressed form of TLSPlaintext.fragment. - * - * Note: A CompressionMethod.null operation is an identity operation; no fields - * are altered. In this implementation, since no compression is supported, - * uncompressed records are always the same as compressed records. - * - * Encryption Information: - * - * The encryption and MAC functions translate a TLSCompressed structure into a - * TLSCiphertext. The decryption functions reverse the process. The MAC of the - * record also includes a sequence number so that missing, extra, or repeated - * messages are detectable. - * - * struct { - * ContentType type; - * ProtocolVersion version; - * uint16 length; - * select (SecurityParameters.cipher_type) { - * case stream: GenericStreamCipher; - * case block: GenericBlockCipher; - * case aead: GenericAEADCipher; - * } fragment; - * } TLSCiphertext; - * - * type: - * The type field is identical to TLSCompressed.type. - * - * version: - * The version field is identical to TLSCompressed.version. - * - * length: - * The length (in bytes) of the following TLSCiphertext.fragment. - * The length MUST NOT exceed 2^14 + 2048. - * - * fragment: - * The encrypted form of TLSCompressed.fragment, with the MAC. - * - * Note: Only CBC Block Ciphers are supported by this implementation. - * - * The TLSCompressed.fragment structures are converted to/from block - * TLSCiphertext.fragment structures. - * - * struct { - * opaque IV[SecurityParameters.record_iv_length]; - * block-ciphered struct { - * opaque content[TLSCompressed.length]; - * opaque MAC[SecurityParameters.mac_length]; - * uint8 padding[GenericBlockCipher.padding_length]; - * uint8 padding_length; - * }; - * } GenericBlockCipher; - * - * The MAC is generated as described in Section 6.2.3.1. - * - * IV: - * The Initialization Vector (IV) SHOULD be chosen at random, and MUST be - * unpredictable. Note that in versions of TLS prior to 1.1, there was no - * IV field, and the last ciphertext block of the previous record (the "CBC - * residue") was used as the IV. This was changed to prevent the attacks - * described in [CBCATT]. For block ciphers, the IV length is of length - * SecurityParameters.record_iv_length, which is equal to the - * SecurityParameters.block_size. - * - * padding: - * Padding that is added to force the length of the plaintext to be an - * integral multiple of the block cipher's block length. The padding MAY be - * any length up to 255 bytes, as long as it results in the - * TLSCiphertext.length being an integral multiple of the block length. - * Lengths longer than necessary might be desirable to frustrate attacks on - * a protocol that are based on analysis of the lengths of exchanged - * messages. Each uint8 in the padding data vector MUST be filled with the - * padding length value. The receiver MUST check this padding and MUST use - * the bad_record_mac alert to indicate padding errors. - * - * padding_length: - * The padding length MUST be such that the total size of the - * GenericBlockCipher structure is a multiple of the cipher's block length. - * Legal values range from zero to 255, inclusive. This length specifies the - * length of the padding field exclusive of the padding_length field itself. - * - * The encrypted data length (TLSCiphertext.length) is one more than the sum of - * SecurityParameters.block_length, TLSCompressed.length, - * SecurityParameters.mac_length, and padding_length. - * - * Example: If the block length is 8 bytes, the content length - * (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, then the - * length before padding is 82 bytes (this does not include the IV. Thus, the - * padding length modulo 8 must be equal to 6 in order to make the total length - * an even multiple of 8 bytes (the block length). The padding length can be - * 6, 14, 22, and so on, through 254. If the padding length were the minimum - * necessary, 6, the padding would be 6 bytes, each containing the value 6. - * Thus, the last 8 octets of the GenericBlockCipher before block encryption - * would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC. - * - * Note: With block ciphers in CBC mode (Cipher Block Chaining), it is critical - * that the entire plaintext of the record be known before any ciphertext is - * transmitted. Otherwise, it is possible for the attacker to mount the attack - * described in [CBCATT]. - * - * Implementation note: Canvel et al. [CBCTIME] have demonstrated a timing - * attack on CBC padding based on the time required to compute the MAC. In - * order to defend against this attack, implementations MUST ensure that - * record processing time is essentially the same whether or not the padding - * is correct. In general, the best way to do this is to compute the MAC even - * if the padding is incorrect, and only then reject the packet. For instance, - * if the pad appears to be incorrect, the implementation might assume a - * zero-length pad and then compute the MAC. This leaves a small timing - * channel, since MAC performance depends, to some extent, on the size of the - * data fragment, but it is not believed to be large enough to be exploitable, - * due to the large block size of existing MACs and the small size of the - * timing signal. - */ -(function() { -/* ########## Begin module implementation ########## */ -function initModule(forge) { - -/** - * Generates pseudo random bytes by mixing the result of two hash functions, - * MD5 and SHA-1. - * - * prf_TLS1(secret, label, seed) = - * P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed); - * - * Each P_hash function functions as follows: - * - * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + - * HMAC_hash(secret, A(2) + seed) + - * HMAC_hash(secret, A(3) + seed) + ... - * A() is defined as: - * A(0) = seed - * A(i) = HMAC_hash(secret, A(i-1)) - * - * The '+' operator denotes concatenation. - * - * As many iterations A(N) as are needed are performed to generate enough - * pseudo random byte output. If an iteration creates more data than is - * necessary, then it is truncated. - * - * Therefore: - * A(1) = HMAC_hash(secret, A(0)) - * = HMAC_hash(secret, seed) - * A(2) = HMAC_hash(secret, A(1)) - * = HMAC_hash(secret, HMAC_hash(secret, seed)) - * - * Therefore: - * P_hash(secret, seed) = - * HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) + - * HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) + - * ... - * - * Therefore: - * P_hash(secret, seed) = - * HMAC_hash(secret, HMAC_hash(secret, seed) + seed) + - * HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) + - * ... - * - * @param secret the secret to use. - * @param label the label to use. - * @param seed the seed value to use. - * @param length the number of bytes to generate. - * - * @return the pseudo random bytes in a byte buffer. - */ -var prf_TLS1 = function(secret, label, seed, length) { - var rval = forge.util.createBuffer(); - - /* For TLS 1.0, the secret is split in half, into two secrets of equal - length. If the secret has an odd length then the last byte of the first - half will be the same as the first byte of the second. The length of the - two secrets is half of the secret rounded up. */ - var idx = (secret.length >> 1); - var slen = idx + (secret.length & 1); - var s1 = secret.substr(0, slen); - var s2 = secret.substr(idx, slen); - var ai = forge.util.createBuffer(); - var hmac = forge.hmac.create(); - seed = label + seed; - - // determine the number of iterations that must be performed to generate - // enough output bytes, md5 creates 16 byte hashes, sha1 creates 20 - var md5itr = Math.ceil(length / 16); - var sha1itr = Math.ceil(length / 20); - - // do md5 iterations - hmac.start('MD5', s1); - var md5bytes = forge.util.createBuffer(); - ai.putBytes(seed); - for(var i = 0; i < md5itr; ++i) { - // HMAC_hash(secret, A(i-1)) - hmac.start(null, null); - hmac.update(ai.getBytes()); - ai.putBuffer(hmac.digest()); - - // HMAC_hash(secret, A(i) + seed) - hmac.start(null, null); - hmac.update(ai.bytes() + seed); - md5bytes.putBuffer(hmac.digest()); - } - - // do sha1 iterations - hmac.start('SHA1', s2); - var sha1bytes = forge.util.createBuffer(); - ai.clear(); - ai.putBytes(seed); - for(var i = 0; i < sha1itr; ++i) { - // HMAC_hash(secret, A(i-1)) - hmac.start(null, null); - hmac.update(ai.getBytes()); - ai.putBuffer(hmac.digest()); - - // HMAC_hash(secret, A(i) + seed) - hmac.start(null, null); - hmac.update(ai.bytes() + seed); - sha1bytes.putBuffer(hmac.digest()); - } - - // XOR the md5 bytes with the sha1 bytes - rval.putBytes(forge.util.xorBytes( - md5bytes.getBytes(), sha1bytes.getBytes(), length)); - - return rval; -}; - -/** - * Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2. - * - * @param secret the secret to use. - * @param label the label to use. - * @param seed the seed value to use. - * @param length the number of bytes to generate. - * - * @return the pseudo random bytes in a byte buffer. - */ -var prf_sha256 = function(secret, label, seed, length) { - // FIXME: implement me for TLS 1.2 -}; - -/** - * Gets a MAC for a record using the SHA-1 hash algorithm. - * - * @param key the mac key. - * @param state the sequence number (array of two 32-bit integers). - * @param record the record. - * - * @return the sha-1 hash (20 bytes) for the given record. - */ -var hmac_sha1 = function(key, seqNum, record) { - /* MAC is computed like so: - HMAC_hash( - key, seqNum + - TLSCompressed.type + - TLSCompressed.version + - TLSCompressed.length + - TLSCompressed.fragment) - */ - var hmac = forge.hmac.create(); - hmac.start('SHA1', key); - var b = forge.util.createBuffer(); - b.putInt32(seqNum[0]); - b.putInt32(seqNum[1]); - b.putByte(record.type); - b.putByte(record.version.major); - b.putByte(record.version.minor); - b.putInt16(record.length); - b.putBytes(record.fragment.bytes()); - hmac.update(b.getBytes()); - return hmac.digest().getBytes(); -}; - -/** - * Compresses the TLSPlaintext record into a TLSCompressed record using the - * deflate algorithm. - * - * @param c the TLS connection. - * @param record the TLSPlaintext record to compress. - * @param s the ConnectionState to use. - * - * @return true on success, false on failure. - */ -var deflate = function(c, record, s) { - var rval = false; - - try { - var bytes = c.deflate(record.fragment.getBytes()); - record.fragment = forge.util.createBuffer(bytes); - record.length = bytes.length; - rval = true; - } catch(ex) { - // deflate error, fail out - } - - return rval; -}; - -/** - * Decompresses the TLSCompressed record into a TLSPlaintext record using the - * deflate algorithm. - * - * @param c the TLS connection. - * @param record the TLSCompressed record to decompress. - * @param s the ConnectionState to use. - * - * @return true on success, false on failure. - */ -var inflate = function(c, record, s) { - var rval = false; - - try { - var bytes = c.inflate(record.fragment.getBytes()); - record.fragment = forge.util.createBuffer(bytes); - record.length = bytes.length; - rval = true; - } catch(ex) { - // inflate error, fail out - } - - return rval; -}; - -/** - * Reads a TLS variable-length vector from a byte buffer. - * - * Variable-length vectors are defined by specifying a subrange of legal - * lengths, inclusively, using the notation <floor..ceiling>. When these are - * encoded, the actual length precedes the vector's contents in the byte - * stream. The length will be in the form of a number consuming as many bytes - * as required to hold the vector's specified maximum (ceiling) length. A - * variable-length vector with an actual length field of zero is referred to - * as an empty vector. - * - * @param b the byte buffer. - * @param lenBytes the number of bytes required to store the length. - * - * @return the resulting byte buffer. - */ -var readVector = function(b, lenBytes) { - var len = 0; - switch(lenBytes) { - case 1: - len = b.getByte(); - break; - case 2: - len = b.getInt16(); - break; - case 3: - len = b.getInt24(); - break; - case 4: - len = b.getInt32(); - break; - } - - // read vector bytes into a new buffer - return forge.util.createBuffer(b.getBytes(len)); -}; - -/** - * Writes a TLS variable-length vector to a byte buffer. - * - * @param b the byte buffer. - * @param lenBytes the number of bytes required to store the length. - * @param v the byte buffer vector. - */ -var writeVector = function(b, lenBytes, v) { - // encode length at the start of the vector, where the number of bytes for - // the length is the maximum number of bytes it would take to encode the - // vector's ceiling - b.putInt(v.length(), lenBytes << 3); - b.putBuffer(v); -}; - -/** - * The tls implementation. - */ -var tls = {}; - -/** - * Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and - * TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time - * of this implementation so TLS 1.0 was implemented instead. - */ -tls.Versions = { - TLS_1_0: {major: 3, minor: 1}, - TLS_1_1: {major: 3, minor: 2}, - TLS_1_2: {major: 3, minor: 3} -}; -tls.SupportedVersions = [ - tls.Versions.TLS_1_1, - tls.Versions.TLS_1_0 -]; -tls.Version = tls.SupportedVersions[0]; - -/** - * Maximum fragment size. True maximum is 16384, but we fragment before that - * to allow for unusual small increases during compression. - */ -tls.MaxFragment = 16384 - 1024; - -/** - * Whether this entity is considered the "client" or "server". - * enum { server, client } ConnectionEnd; - */ -tls.ConnectionEnd = { - server: 0, - client: 1 -}; - -/** - * Pseudo-random function algorithm used to generate keys from the master - * secret. - * enum { tls_prf_sha256 } PRFAlgorithm; - */ -tls.PRFAlgorithm = { - tls_prf_sha256: 0 -}; - -/** - * Bulk encryption algorithms. - * enum { null, rc4, des3, aes } BulkCipherAlgorithm; - */ -tls.BulkCipherAlgorithm = { - none: null, - rc4: 0, - des3: 1, - aes: 2 -}; - -/** - * Cipher types. - * enum { stream, block, aead } CipherType; - */ -tls.CipherType = { - stream: 0, - block: 1, - aead: 2 -}; - -/** - * MAC (Message Authentication Code) algorithms. - * enum { null, hmac_md5, hmac_sha1, hmac_sha256, - * hmac_sha384, hmac_sha512} MACAlgorithm; - */ -tls.MACAlgorithm = { - none: null, - hmac_md5: 0, - hmac_sha1: 1, - hmac_sha256: 2, - hmac_sha384: 3, - hmac_sha512: 4 -}; - -/** - * Compression algorithms. - * enum { null(0), deflate(1), (255) } CompressionMethod; - */ -tls.CompressionMethod = { - none: 0, - deflate: 1 -}; - -/** - * TLS record content types. - * enum { - * change_cipher_spec(20), alert(21), handshake(22), - * application_data(23), (255) - * } ContentType; - */ -tls.ContentType = { - change_cipher_spec: 20, - alert: 21, - handshake: 22, - application_data: 23, - heartbeat: 24 -}; - -/** - * TLS handshake types. - * enum { - * hello_request(0), client_hello(1), server_hello(2), - * certificate(11), server_key_exchange (12), - * certificate_request(13), server_hello_done(14), - * certificate_verify(15), client_key_exchange(16), - * finished(20), (255) - * } HandshakeType; - */ -tls.HandshakeType = { - hello_request: 0, - client_hello: 1, - server_hello: 2, - certificate: 11, - server_key_exchange: 12, - certificate_request: 13, - server_hello_done: 14, - certificate_verify: 15, - client_key_exchange: 16, - finished: 20 -}; - -/** - * TLS Alert Protocol. - * - * enum { warning(1), fatal(2), (255) } AlertLevel; - * - * enum { - * close_notify(0), - * unexpected_message(10), - * bad_record_mac(20), - * decryption_failed(21), - * record_overflow(22), - * decompression_failure(30), - * handshake_failure(40), - * bad_certificate(42), - * unsupported_certificate(43), - * certificate_revoked(44), - * certificate_expired(45), - * certificate_unknown(46), - * illegal_parameter(47), - * unknown_ca(48), - * access_denied(49), - * decode_error(50), - * decrypt_error(51), - * export_restriction(60), - * protocol_version(70), - * insufficient_security(71), - * internal_error(80), - * user_canceled(90), - * no_renegotiation(100), - * (255) - * } AlertDescription; - * - * struct { - * AlertLevel level; - * AlertDescription description; - * } Alert; - */ -tls.Alert = {}; -tls.Alert.Level = { - warning: 1, - fatal: 2 -}; -tls.Alert.Description = { - close_notify: 0, - unexpected_message: 10, - bad_record_mac: 20, - decryption_failed: 21, - record_overflow: 22, - decompression_failure: 30, - handshake_failure: 40, - bad_certificate: 42, - unsupported_certificate: 43, - certificate_revoked: 44, - certificate_expired: 45, - certificate_unknown: 46, - illegal_parameter: 47, - unknown_ca: 48, - access_denied: 49, - decode_error: 50, - decrypt_error: 51, - export_restriction: 60, - protocol_version: 70, - insufficient_security: 71, - internal_error: 80, - user_canceled: 90, - no_renegotiation: 100 -}; - -/** - * TLS Heartbeat Message types. - * enum { - * heartbeat_request(1), - * heartbeat_response(2), - * (255) - * } HeartbeatMessageType; - */ -tls.HeartbeatMessageType = { - heartbeat_request: 1, - heartbeat_response: 2 -}; - -/** - * Supported cipher suites. - */ -tls.CipherSuites = {}; - -/** - * Gets a supported cipher suite from its 2 byte ID. - * - * @param twoBytes two bytes in a string. - * - * @return the matching supported cipher suite or null. - */ -tls.getCipherSuite = function(twoBytes) { - var rval = null; - for(var key in tls.CipherSuites) { - var cs = tls.CipherSuites[key]; - if(cs.id[0] === twoBytes.charCodeAt(0) && - cs.id[1] === twoBytes.charCodeAt(1)) { - rval = cs; - break; - } - } - return rval; -}; - -/** - * Called when an unexpected record is encountered. - * - * @param c the connection. - * @param record the record. - */ -tls.handleUnexpected = function(c, record) { - // if connection is client and closed, ignore unexpected messages - var ignore = (!c.open && c.entity === tls.ConnectionEnd.client); - if(!ignore) { - c.error(c, { - message: 'Unexpected message. Received TLS record out of order.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.unexpected_message - } - }); - } -}; - -/** - * Called when a client receives a HelloRequest record. - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleHelloRequest = function(c, record, length) { - // ignore renegotiation requests from the server during a handshake, but - // if handshaking, send a warning alert that renegotation is denied - if(!c.handshaking && c.handshakes > 0) { - // send alert warning - tls.queue(c, tls.createAlert(c, { - level: tls.Alert.Level.warning, - description: tls.Alert.Description.no_renegotiation - })); - tls.flush(c); - } - - // continue - c.process(); -}; - -/** - * Parses a hello message from a ClientHello or ServerHello record. - * - * @param record the record to parse. - * - * @return the parsed message. - */ -tls.parseHelloMessage = function(c, record, length) { - var msg = null; - - var client = (c.entity === tls.ConnectionEnd.client); - - // minimum of 38 bytes in message - if(length < 38) { - c.error(c, { - message: client ? - 'Invalid ServerHello message. Message too short.' : - 'Invalid ClientHello message. Message too short.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.illegal_parameter - } - }); - } else { - // use 'remaining' to calculate # of remaining bytes in the message - var b = record.fragment; - var remaining = b.length(); - msg = { - version: { - major: b.getByte(), - minor: b.getByte() - }, - random: forge.util.createBuffer(b.getBytes(32)), - session_id: readVector(b, 1), - extensions: [] - }; - if(client) { - msg.cipher_suite = b.getBytes(2); - msg.compression_method = b.getByte(); - } else { - msg.cipher_suites = readVector(b, 2); - msg.compression_methods = readVector(b, 1); - } - - // read extensions if there are any bytes left in the message - remaining = length - (remaining - b.length()); - if(remaining > 0) { - // parse extensions - var exts = readVector(b, 2); - while(exts.length() > 0) { - msg.extensions.push({ - type: [exts.getByte(), exts.getByte()], - data: readVector(exts, 2) - }); - } - - // TODO: make extension support modular - if(!client) { - for(var i = 0; i < msg.extensions.length; ++i) { - var ext = msg.extensions[i]; - - // support SNI extension - if(ext.type[0] === 0x00 && ext.type[1] === 0x00) { - // get server name list - var snl = readVector(ext.data, 2); - while(snl.length() > 0) { - // read server name type - var snType = snl.getByte(); - - // only HostName type (0x00) is known, break out if - // another type is detected - if(snType !== 0x00) { - break; - } - - // add host name to server name list - c.session.extensions.server_name.serverNameList.push( - readVector(snl, 2).getBytes()); - } - } - } - } - } - - // version already set, do not allow version change - if(c.session.version) { - if(msg.version.major !== c.session.version.major || - msg.version.minor !== c.session.version.minor) { - return c.error(c, { - message: 'TLS version change is disallowed during renegotiation.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.protocol_version - } - }); - } - } - - // get the chosen (ServerHello) cipher suite - if(client) { - // FIXME: should be checking configured acceptable cipher suites - c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite); - } else { - // get a supported preferred (ClientHello) cipher suite - // choose the first supported cipher suite - var tmp = forge.util.createBuffer(msg.cipher_suites.bytes()); - while(tmp.length() > 0) { - // FIXME: should be checking configured acceptable suites - // cipher suites take up 2 bytes - c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2)); - if(c.session.cipherSuite !== null) { - break; - } - } - } - - // cipher suite not supported - if(c.session.cipherSuite === null) { - return c.error(c, { - message: 'No cipher suites in common.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.handshake_failure - }, - cipherSuite: forge.util.bytesToHex(msg.cipher_suite) - }); - } - - // TODO: handle compression methods - if(client) { - c.session.compressionMethod = msg.compression_method; - } else { - // no compression - c.session.compressionMethod = tls.CompressionMethod.none; - } - } - - return msg; -}; - -/** - * Creates security parameters for the given connection based on the given - * hello message. - * - * @param c the TLS connection. - * @param msg the hello message. - */ -tls.createSecurityParameters = function(c, msg) { - /* Note: security params are from TLS 1.2, some values like prf_algorithm - are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is - used. */ - - // TODO: handle other options from server when more supported - - // get client and server randoms - var client = (c.entity === tls.ConnectionEnd.client); - var msgRandom = msg.random.bytes(); - var cRandom = client ? c.session.sp.client_random : msgRandom; - var sRandom = client ? msgRandom : tls.createRandom().getBytes(); - - // create new security parameters - c.session.sp = { - entity: c.entity, - prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256, - bulk_cipher_algorithm: null, - cipher_type: null, - enc_key_length: null, - block_length: null, - fixed_iv_length: null, - record_iv_length: null, - mac_algorithm: null, - mac_length: null, - mac_key_length: null, - compression_algorithm: c.session.compressionMethod, - pre_master_secret: null, - master_secret: null, - client_random: cRandom, - server_random: sRandom - }; -}; - -/** - * Called when a client receives a ServerHello record. - * - * When a ServerHello message will be sent: - * The server will send this message in response to a client hello message - * when it was able to find an acceptable set of algorithms. If it cannot - * find such a match, it will respond with a handshake failure alert. - * - * uint24 length; - * struct { - * ProtocolVersion server_version; - * Random random; - * SessionID session_id; - * CipherSuite cipher_suite; - * CompressionMethod compression_method; - * select(extensions_present) { - * case false: - * struct {}; - * case true: - * Extension extensions<0..2^16-1>; - * }; - * } ServerHello; - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleServerHello = function(c, record, length) { - var msg = tls.parseHelloMessage(c, record, length); - if(c.fail) { - return; - } - - // ensure server version is compatible - if(msg.version.minor <= c.version.minor) { - c.version.minor = msg.version.minor; - } else { - return c.error(c, { - message: 'Incompatible TLS version.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.protocol_version - } - }); - } - - // indicate session version has been set - c.session.version = c.version; - - // get the session ID from the message - var sessionId = msg.session_id.bytes(); - - // if the session ID is not blank and matches the cached one, resume - // the session - if(sessionId.length > 0 && sessionId === c.session.id) { - // resuming session, expect a ChangeCipherSpec next - c.expect = SCC; - c.session.resuming = true; - - // get new server random - c.session.sp.server_random = msg.random.bytes(); - } else { - // not resuming, expect a server Certificate message next - c.expect = SCE; - c.session.resuming = false; - - // create new security parameters - tls.createSecurityParameters(c, msg); - } - - // set new session ID - c.session.id = sessionId; - - // continue - c.process(); -}; - -/** - * Called when a server receives a ClientHello record. - * - * When a ClientHello message will be sent: - * When a client first connects to a server it is required to send the - * client hello as its first message. The client can also send a client - * hello in response to a hello request or on its own initiative in order - * to renegotiate the security parameters in an existing connection. - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleClientHello = function(c, record, length) { - var msg = tls.parseHelloMessage(c, record, length); - if(c.fail) { - return; - } - - // get the session ID from the message - var sessionId = msg.session_id.bytes(); - - // see if the given session ID is in the cache - var session = null; - if(c.sessionCache) { - session = c.sessionCache.getSession(sessionId); - if(session === null) { - // session ID not found - sessionId = ''; - } else if(session.version.major !== msg.version.major || - session.version.minor > msg.version.minor) { - // if session version is incompatible with client version, do not resume - session = null; - sessionId = ''; - } - } - - // no session found to resume, generate a new session ID - if(sessionId.length === 0) { - sessionId = forge.random.getBytes(32); - } - - // update session - c.session.id = sessionId; - c.session.clientHelloVersion = msg.version; - c.session.sp = {}; - if(session) { - // use version and security parameters from resumed session - c.version = c.session.version = session.version; - c.session.sp = session.sp; - } else { - // use highest compatible minor version - var version; - for(var i = 1; i < tls.SupportedVersions.length; ++i) { - version = tls.SupportedVersions[i]; - if(version.minor <= msg.version.minor) { - break; - } - } - c.version = {major: version.major, minor: version.minor}; - c.session.version = c.version; - } - - // if a session is set, resume it - if(session !== null) { - // resuming session, expect a ChangeCipherSpec next - c.expect = CCC; - c.session.resuming = true; - - // get new client random - c.session.sp.client_random = msg.random.bytes(); - } else { - // not resuming, expect a Certificate or ClientKeyExchange - c.expect = (c.verifyClient !== false) ? CCE : CKE; - c.session.resuming = false; - - // create new security parameters - tls.createSecurityParameters(c, msg); - } - - // connection now open - c.open = true; - - // queue server hello - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createServerHello(c) - })); - - if(c.session.resuming) { - // queue change cipher spec message - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.change_cipher_spec, - data: tls.createChangeCipherSpec() - })); - - // create pending state - c.state.pending = tls.createConnectionState(c); - - // change current write state to pending write state - c.state.current.write = c.state.pending.write; - - // queue finished - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createFinished(c) - })); - } else { - // queue server certificate - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createCertificate(c) - })); - - if(!c.fail) { - // queue server key exchange - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createServerKeyExchange(c) - })); - - // request client certificate if set - if(c.verifyClient !== false) { - // queue certificate request - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createCertificateRequest(c) - })); - } - - // queue server hello done - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createServerHelloDone(c) - })); - } - } - - // send records - tls.flush(c); - - // continue - c.process(); -}; - -/** - * Called when a client receives a Certificate record. - * - * When this message will be sent: - * The server must send a certificate whenever the agreed-upon key exchange - * method is not an anonymous one. This message will always immediately - * follow the server hello message. - * - * Meaning of this message: - * The certificate type must be appropriate for the selected cipher suite's - * key exchange algorithm, and is generally an X.509v3 certificate. It must - * contain a key which matches the key exchange method, as follows. Unless - * otherwise specified, the signing algorithm for the certificate must be - * the same as the algorithm for the certificate key. Unless otherwise - * specified, the public key may be of any length. - * - * opaque ASN.1Cert<1..2^24-1>; - * struct { - * ASN.1Cert certificate_list<1..2^24-1>; - * } Certificate; - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleCertificate = function(c, record, length) { - // minimum of 3 bytes in message - if(length < 3) { - return c.error(c, { - message: 'Invalid Certificate message. Message too short.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.illegal_parameter - } - }); - } - - var b = record.fragment; - var msg = { - certificate_list: readVector(b, 3) - }; - - /* The sender's certificate will be first in the list (chain), each - subsequent one that follows will certify the previous one, but root - certificates (self-signed) that specify the certificate authority may - be omitted under the assumption that clients must already possess it. */ - var cert, asn1; - var certs = []; - try { - while(msg.certificate_list.length() > 0) { - // each entry in msg.certificate_list is a vector with 3 len bytes - cert = readVector(msg.certificate_list, 3); - asn1 = forge.asn1.fromDer(cert); - cert = forge.pki.certificateFromAsn1(asn1, true); - certs.push(cert); - } - } catch(ex) { - return c.error(c, { - message: 'Could not parse certificate list.', - cause: ex, - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.bad_certificate - } - }); - } - - // ensure at least 1 certificate was provided if in client-mode - // or if verifyClient was set to true to require a certificate - // (as opposed to 'optional') - var client = (c.entity === tls.ConnectionEnd.client); - if((client || c.verifyClient === true) && certs.length === 0) { - // error, no certificate - c.error(c, { - message: client ? - 'No server certificate provided.' : - 'No client certificate provided.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.illegal_parameter - } - }); - } else if(certs.length === 0) { - // no certs to verify - // expect a ServerKeyExchange or ClientKeyExchange message next - c.expect = client ? SKE : CKE; - } else { - // save certificate in session - if(client) { - c.session.serverCertificate = certs[0]; - } else { - c.session.clientCertificate = certs[0]; - } - - if(tls.verifyCertificateChain(c, certs)) { - // expect a ServerKeyExchange or ClientKeyExchange message next - c.expect = client ? SKE : CKE; - } - } - - // continue - c.process(); -}; - -/** - * Called when a client receives a ServerKeyExchange record. - * - * When this message will be sent: - * This message will be sent immediately after the server certificate - * message (or the server hello message, if this is an anonymous - * negotiation). - * - * The server key exchange message is sent by the server only when the - * server certificate message (if sent) does not contain enough data to - * allow the client to exchange a premaster secret. - * - * Meaning of this message: - * This message conveys cryptographic information to allow the client to - * communicate the premaster secret: either an RSA public key to encrypt - * the premaster secret with, or a Diffie-Hellman public key with which the - * client can complete a key exchange (with the result being the premaster - * secret.) - * - * enum { - * dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa - * } KeyExchangeAlgorithm; - * - * struct { - * opaque dh_p<1..2^16-1>; - * opaque dh_g<1..2^16-1>; - * opaque dh_Ys<1..2^16-1>; - * } ServerDHParams; - * - * struct { - * select(KeyExchangeAlgorithm) { - * case dh_anon: - * ServerDHParams params; - * case dhe_dss: - * case dhe_rsa: - * ServerDHParams params; - * digitally-signed struct { - * opaque client_random[32]; - * opaque server_random[32]; - * ServerDHParams params; - * } signed_params; - * case rsa: - * case dh_dss: - * case dh_rsa: - * struct {}; - * }; - * } ServerKeyExchange; - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleServerKeyExchange = function(c, record, length) { - // this implementation only supports RSA, no Diffie-Hellman support - // so any length > 0 is invalid - if(length > 0) { - return c.error(c, { - message: 'Invalid key parameters. Only RSA is supported.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.unsupported_certificate - } - }); - } - - // expect an optional CertificateRequest message next - c.expect = SCR; - - // continue - c.process(); -}; - -/** - * Called when a client receives a ClientKeyExchange record. - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleClientKeyExchange = function(c, record, length) { - // this implementation only supports RSA, no Diffie-Hellman support - // so any length < 48 is invalid - if(length < 48) { - return c.error(c, { - message: 'Invalid key parameters. Only RSA is supported.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.unsupported_certificate - } - }); - } - - var b = record.fragment; - var msg = { - enc_pre_master_secret: readVector(b, 2).getBytes() - }; - - // do rsa decryption - var privateKey = null; - if(c.getPrivateKey) { - try { - privateKey = c.getPrivateKey(c, c.session.serverCertificate); - privateKey = forge.pki.privateKeyFromPem(privateKey); - } catch(ex) { - c.error(c, { - message: 'Could not get private key.', - cause: ex, - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.internal_error - } - }); - } - } - - if(privateKey === null) { - return c.error(c, { - message: 'No private key set.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.internal_error - } - }); - } - - try { - // decrypt 48-byte pre-master secret - var sp = c.session.sp; - sp.pre_master_secret = privateKey.decrypt(msg.enc_pre_master_secret); - - // ensure client hello version matches first 2 bytes - var version = c.session.clientHelloVersion; - if(version.major !== sp.pre_master_secret.charCodeAt(0) || - version.minor !== sp.pre_master_secret.charCodeAt(1)) { - // error, do not send alert (see BLEI attack below) - throw new Error('TLS version rollback attack detected.'); - } - } catch(ex) { - /* Note: Daniel Bleichenbacher [BLEI] can be used to attack a - TLS server which is using PKCS#1 encoded RSA, so instead of - failing here, we generate 48 random bytes and use that as - the pre-master secret. */ - sp.pre_master_secret = forge.random.getBytes(48); - } - - // expect a CertificateVerify message if a Certificate was received that - // does not have fixed Diffie-Hellman params, otherwise expect - // ChangeCipherSpec - c.expect = CCC; - if(c.session.clientCertificate !== null) { - // only RSA support, so expect CertificateVerify - // TODO: support Diffie-Hellman - c.expect = CCV; - } - - // continue - c.process(); -}; - -/** - * Called when a client receives a CertificateRequest record. - * - * When this message will be sent: - * A non-anonymous server can optionally request a certificate from the - * client, if appropriate for the selected cipher suite. This message, if - * sent, will immediately follow the Server Key Exchange message (if it is - * sent; otherwise, the Server Certificate message). - * - * enum { - * rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4), - * rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6), - * fortezza_dms_RESERVED(20), (255) - * } ClientCertificateType; - * - * opaque DistinguishedName<1..2^16-1>; - * - * struct { - * ClientCertificateType certificate_types<1..2^8-1>; - * SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>; - * DistinguishedName certificate_authorities<0..2^16-1>; - * } CertificateRequest; - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleCertificateRequest = function(c, record, length) { - // minimum of 3 bytes in message - if(length < 3) { - return c.error(c, { - message: 'Invalid CertificateRequest. Message too short.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.illegal_parameter - } - }); - } - - // TODO: TLS 1.2+ has different format including - // SignatureAndHashAlgorithm after cert types - var b = record.fragment; - var msg = { - certificate_types: readVector(b, 1), - certificate_authorities: readVector(b, 2) - }; - - // save certificate request in session - c.session.certificateRequest = msg; - - // expect a ServerHelloDone message next - c.expect = SHD; - - // continue - c.process(); -}; - -/** - * Called when a server receives a CertificateVerify record. - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleCertificateVerify = function(c, record, length) { - if(length < 2) { - return c.error(c, { - message: 'Invalid CertificateVerify. Message too short.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.illegal_parameter - } - }); - } - - // rewind to get full bytes for message so it can be manually - // digested below (special case for CertificateVerify messages because - // they must be digested *after* handling as opposed to all others) - var b = record.fragment; - b.read -= 4; - var msgBytes = b.bytes(); - b.read += 4; - - var msg = { - signature: readVector(b, 2).getBytes() - }; - - // TODO: add support for DSA - - // generate data to verify - var verify = forge.util.createBuffer(); - verify.putBuffer(c.session.md5.digest()); - verify.putBuffer(c.session.sha1.digest()); - verify = verify.getBytes(); - - try { - var cert = c.session.clientCertificate; - /*b = forge.pki.rsa.decrypt( - msg.signature, cert.publicKey, true, verify.length); - if(b !== verify) {*/ - if(!cert.publicKey.verify(verify, msg.signature, 'NONE')) { - throw new Error('CertificateVerify signature does not match.'); - } - - // digest message now that it has been handled - c.session.md5.update(msgBytes); - c.session.sha1.update(msgBytes); - } catch(ex) { - return c.error(c, { - message: 'Bad signature in CertificateVerify.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.handshake_failure - } - }); - } - - // expect ChangeCipherSpec - c.expect = CCC; - - // continue - c.process(); -}; - -/** - * Called when a client receives a ServerHelloDone record. - * - * When this message will be sent: - * The server hello done message is sent by the server to indicate the end - * of the server hello and associated messages. After sending this message - * the server will wait for a client response. - * - * Meaning of this message: - * This message means that the server is done sending messages to support - * the key exchange, and the client can proceed with its phase of the key - * exchange. - * - * Upon receipt of the server hello done message the client should verify - * that the server provided a valid certificate if required and check that - * the server hello parameters are acceptable. - * - * struct {} ServerHelloDone; - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleServerHelloDone = function(c, record, length) { - // len must be 0 bytes - if(length > 0) { - return c.error(c, { - message: 'Invalid ServerHelloDone message. Invalid length.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.record_overflow - } - }); - } - - if(c.serverCertificate === null) { - // no server certificate was provided - var error = { - message: 'No server certificate provided. Not enough security.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.insufficient_security - } - }; - - // call application callback - var depth = 0; - var ret = c.verify(c, error.alert.description, depth, []); - if(ret !== true) { - // check for custom alert info - if(ret || ret === 0) { - // set custom message and alert description - if(typeof ret === 'object' && !forge.util.isArray(ret)) { - if(ret.message) { - error.message = ret.message; - } - if(ret.alert) { - error.alert.description = ret.alert; - } - } else if(typeof ret === 'number') { - // set custom alert description - error.alert.description = ret; - } - } - - // send error - return c.error(c, error); - } - } - - // create client certificate message if requested - if(c.session.certificateRequest !== null) { - record = tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createCertificate(c) - }); - tls.queue(c, record); - } - - // create client key exchange message - record = tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createClientKeyExchange(c) - }); - tls.queue(c, record); - - // expect no messages until the following callback has been called - c.expect = SER; - - // create callback to handle client signature (for client-certs) - var callback = function(c, signature) { - if(c.session.certificateRequest !== null && - c.session.clientCertificate !== null) { - // create certificate verify message - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createCertificateVerify(c, signature) - })); - } - - // create change cipher spec message - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.change_cipher_spec, - data: tls.createChangeCipherSpec() - })); - - // create pending state - c.state.pending = tls.createConnectionState(c); - - // change current write state to pending write state - c.state.current.write = c.state.pending.write; - - // create finished message - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createFinished(c) - })); - - // expect a server ChangeCipherSpec message next - c.expect = SCC; - - // send records - tls.flush(c); - - // continue - c.process(); - }; - - // if there is no certificate request or no client certificate, do - // callback immediately - if(c.session.certificateRequest === null || - c.session.clientCertificate === null) { - return callback(c, null); - } - - // otherwise get the client signature - tls.getClientSignature(c, callback); -}; - -/** - * Called when a ChangeCipherSpec record is received. - * - * @param c the connection. - * @param record the record. - */ -tls.handleChangeCipherSpec = function(c, record) { - if(record.fragment.getByte() !== 0x01) { - return c.error(c, { - message: 'Invalid ChangeCipherSpec message received.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.illegal_parameter - } - }); - } - - // create pending state if: - // 1. Resuming session in client mode OR - // 2. NOT resuming session in server mode - var client = (c.entity === tls.ConnectionEnd.client); - if((c.session.resuming && client) || (!c.session.resuming && !client)) { - c.state.pending = tls.createConnectionState(c); - } - - // change current read state to pending read state - c.state.current.read = c.state.pending.read; - - // clear pending state if: - // 1. NOT resuming session in client mode OR - // 2. resuming a session in server mode - if((!c.session.resuming && client) || (c.session.resuming && !client)) { - c.state.pending = null; - } - - // expect a Finished record next - c.expect = client ? SFI : CFI; - - // continue - c.process(); -}; - -/** - * Called when a Finished record is received. - * - * When this message will be sent: - * A finished message is always sent immediately after a change - * cipher spec message to verify that the key exchange and - * authentication processes were successful. It is essential that a - * change cipher spec message be received between the other - * handshake messages and the Finished message. - * - * Meaning of this message: - * The finished message is the first protected with the just- - * negotiated algorithms, keys, and secrets. Recipients of finished - * messages must verify that the contents are correct. Once a side - * has sent its Finished message and received and validated the - * Finished message from its peer, it may begin to send and receive - * application data over the connection. - * - * struct { - * opaque verify_data[verify_data_length]; - * } Finished; - * - * verify_data - * PRF(master_secret, finished_label, Hash(handshake_messages)) - * [0..verify_data_length-1]; - * - * finished_label - * For Finished messages sent by the client, the string - * "client finished". For Finished messages sent by the server, the - * string "server finished". - * - * verify_data_length depends on the cipher suite. If it is not specified - * by the cipher suite, then it is 12. Versions of TLS < 1.2 always used - * 12 bytes. - * - * @param c the connection. - * @param record the record. - * @param length the length of the handshake message. - */ -tls.handleFinished = function(c, record, length) { - // rewind to get full bytes for message so it can be manually - // digested below (special case for Finished messages because they - // must be digested *after* handling as opposed to all others) - var b = record.fragment; - b.read -= 4; - var msgBytes = b.bytes(); - b.read += 4; - - // message contains only verify_data - var vd = record.fragment.getBytes(); - - // ensure verify data is correct - b = forge.util.createBuffer(); - b.putBuffer(c.session.md5.digest()); - b.putBuffer(c.session.sha1.digest()); - - // set label based on entity type - var client = (c.entity === tls.ConnectionEnd.client); - var label = client ? 'server finished' : 'client finished'; - - // TODO: determine prf function and verify length for TLS 1.2 - var sp = c.session.sp; - var vdl = 12; - var prf = prf_TLS1; - b = prf(sp.master_secret, label, b.getBytes(), vdl); - if(b.getBytes() !== vd) { - return c.error(c, { - message: 'Invalid verify_data in Finished message.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.decrypt_error - } - }); - } - - // digest finished message now that it has been handled - c.session.md5.update(msgBytes); - c.session.sha1.update(msgBytes); - - // resuming session as client or NOT resuming session as server - if((c.session.resuming && client) || (!c.session.resuming && !client)) { - // create change cipher spec message - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.change_cipher_spec, - data: tls.createChangeCipherSpec() - })); - - // change current write state to pending write state, clear pending - c.state.current.write = c.state.pending.write; - c.state.pending = null; - - // create finished message - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createFinished(c) - })); - } - - // expect application data next - c.expect = client ? SAD : CAD; - - // handshake complete - c.handshaking = false; - ++c.handshakes; - - // save access to peer certificate - c.peerCertificate = client ? - c.session.serverCertificate : c.session.clientCertificate; - - // send records - tls.flush(c); - - // now connected - c.isConnected = true; - c.connected(c); - - // continue - c.process(); -}; - -/** - * Called when an Alert record is received. - * - * @param c the connection. - * @param record the record. - */ -tls.handleAlert = function(c, record) { - // read alert - var b = record.fragment; - var alert = { - level: b.getByte(), - description: b.getByte() - }; - - // TODO: consider using a table? - // get appropriate message - var msg; - switch(alert.description) { - case tls.Alert.Description.close_notify: - msg = 'Connection closed.'; - break; - case tls.Alert.Description.unexpected_message: - msg = 'Unexpected message.'; - break; - case tls.Alert.Description.bad_record_mac: - msg = 'Bad record MAC.'; - break; - case tls.Alert.Description.decryption_failed: - msg = 'Decryption failed.'; - break; - case tls.Alert.Description.record_overflow: - msg = 'Record overflow.'; - break; - case tls.Alert.Description.decompression_failure: - msg = 'Decompression failed.'; - break; - case tls.Alert.Description.handshake_failure: - msg = 'Handshake failure.'; - break; - case tls.Alert.Description.bad_certificate: - msg = 'Bad certificate.'; - break; - case tls.Alert.Description.unsupported_certificate: - msg = 'Unsupported certificate.'; - break; - case tls.Alert.Description.certificate_revoked: - msg = 'Certificate revoked.'; - break; - case tls.Alert.Description.certificate_expired: - msg = 'Certificate expired.'; - break; - case tls.Alert.Description.certificate_unknown: - msg = 'Certificate unknown.'; - break; - case tls.Alert.Description.illegal_parameter: - msg = 'Illegal parameter.'; - break; - case tls.Alert.Description.unknown_ca: - msg = 'Unknown certificate authority.'; - break; - case tls.Alert.Description.access_denied: - msg = 'Access denied.'; - break; - case tls.Alert.Description.decode_error: - msg = 'Decode error.'; - break; - case tls.Alert.Description.decrypt_error: - msg = 'Decrypt error.'; - break; - case tls.Alert.Description.export_restriction: - msg = 'Export restriction.'; - break; - case tls.Alert.Description.protocol_version: - msg = 'Unsupported protocol version.'; - break; - case tls.Alert.Description.insufficient_security: - msg = 'Insufficient security.'; - break; - case tls.Alert.Description.internal_error: - msg = 'Internal error.'; - break; - case tls.Alert.Description.user_canceled: - msg = 'User canceled.'; - break; - case tls.Alert.Description.no_renegotiation: - msg = 'Renegotiation not supported.'; - break; - default: - msg = 'Unknown error.'; - break; - } - - // close connection on close_notify, not an error - if(alert.description === tls.Alert.Description.close_notify) { - return c.close(); - } - - // call error handler - c.error(c, { - message: msg, - send: false, - // origin is the opposite end - origin: (c.entity === tls.ConnectionEnd.client) ? 'server' : 'client', - alert: alert - }); - - // continue - c.process(); -}; - -/** - * Called when a Handshake record is received. - * - * @param c the connection. - * @param record the record. - */ -tls.handleHandshake = function(c, record) { - // get the handshake type and message length - var b = record.fragment; - var type = b.getByte(); - var length = b.getInt24(); - - // see if the record fragment doesn't yet contain the full message - if(length > b.length()) { - // cache the record, clear its fragment, and reset the buffer read - // pointer before the type and length were read - c.fragmented = record; - record.fragment = forge.util.createBuffer(); - b.read -= 4; - - // continue - return c.process(); - } - - // full message now available, clear cache, reset read pointer to - // before type and length - c.fragmented = null; - b.read -= 4; - - // save the handshake bytes for digestion after handler is found - // (include type and length of handshake msg) - var bytes = b.bytes(length + 4); - - // restore read pointer - b.read += 4; - - // handle expected message - if(type in hsTable[c.entity][c.expect]) { - // initialize server session - if(c.entity === tls.ConnectionEnd.server && !c.open && !c.fail) { - c.handshaking = true; - c.session = { - version: null, - extensions: { - server_name: { - serverNameList: [] - } - }, - cipherSuite: null, - compressionMethod: null, - serverCertificate: null, - clientCertificate: null, - md5: forge.md.md5.create(), - sha1: forge.md.sha1.create() - }; - } - - /* Update handshake messages digest. Finished and CertificateVerify - messages are not digested here. They can't be digested as part of - the verify_data that they contain. These messages are manually - digested in their handlers. HelloRequest messages are simply never - included in the handshake message digest according to spec. */ - if(type !== tls.HandshakeType.hello_request && - type !== tls.HandshakeType.certificate_verify && - type !== tls.HandshakeType.finished) { - c.session.md5.update(bytes); - c.session.sha1.update(bytes); - } - - // handle specific handshake type record - hsTable[c.entity][c.expect][type](c, record, length); - } else { - // unexpected record - tls.handleUnexpected(c, record); - } -}; - -/** - * Called when an ApplicationData record is received. - * - * @param c the connection. - * @param record the record. - */ -tls.handleApplicationData = function(c, record) { - // buffer data, notify that its ready - c.data.putBuffer(record.fragment); - c.dataReady(c); - - // continue - c.process(); -}; - -/** - * Called when a Heartbeat record is received. - * - * @param c the connection. - * @param record the record. - */ -tls.handleHeartbeat = function(c, record) { - // get the heartbeat type and payload - var b = record.fragment; - var type = b.getByte(); - var length = b.getInt16(); - var payload = b.getBytes(length); - - if(type === tls.HeartbeatMessageType.heartbeat_request) { - // discard request during handshake or if length is too large - if(c.handshaking || length > payload.length) { - // continue - return c.process(); - } - // retransmit payload - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.heartbeat, - data: tls.createHeartbeat( - tls.HeartbeatMessageType.heartbeat_response, payload) - })); - tls.flush(c); - } else if(type === tls.HeartbeatMessageType.heartbeat_response) { - // check payload against expected payload, discard heartbeat if no match - if(payload !== c.expectedHeartbeatPayload) { - // continue - return c.process(); - } - - // notify that a valid heartbeat was received - if(c.heartbeatReceived) { - c.heartbeatReceived(c, forge.util.createBuffer(payload)); - } - } - - // continue - c.process(); -}; - -/** - * The transistional state tables for receiving TLS records. It maps the - * current TLS engine state and a received record to a function to handle the - * record and update the state. - * - * For instance, if the current state is SHE, then the TLS engine is expecting - * a ServerHello record. Once a record is received, the handler function is - * looked up using the state SHE and the record's content type. - * - * The resulting function will either be an error handler or a record handler. - * The function will take whatever action is appropriate and update the state - * for the next record. - * - * The states are all based on possible server record types. Note that the - * client will never specifically expect to receive a HelloRequest or an alert - * from the server so there is no state that reflects this. These messages may - * occur at any time. - * - * There are two tables for mapping states because there is a second tier of - * types for handshake messages. Once a record with a content type of handshake - * is received, the handshake record handler will look up the handshake type in - * the secondary map to get its appropriate handler. - * - * Valid message orders are as follows: - * - * =======================FULL HANDSHAKE====================== - * Client Server - * - * ClientHello --------> - * ServerHello - * Certificate* - * ServerKeyExchange* - * CertificateRequest* - * <-------- ServerHelloDone - * Certificate* - * ClientKeyExchange - * CertificateVerify* - * [ChangeCipherSpec] - * Finished --------> - * [ChangeCipherSpec] - * <-------- Finished - * Application Data <-------> Application Data - * - * =====================SESSION RESUMPTION===================== - * Client Server - * - * ClientHello --------> - * ServerHello - * [ChangeCipherSpec] - * <-------- Finished - * [ChangeCipherSpec] - * Finished --------> - * Application Data <-------> Application Data - */ -// client expect states (indicate which records are expected to be received) -var SHE = 0; // rcv server hello -var SCE = 1; // rcv server certificate -var SKE = 2; // rcv server key exchange -var SCR = 3; // rcv certificate request -var SHD = 4; // rcv server hello done -var SCC = 5; // rcv change cipher spec -var SFI = 6; // rcv finished -var SAD = 7; // rcv application data -var SER = 8; // not expecting any messages at this point - -// server expect states -var CHE = 0; // rcv client hello -var CCE = 1; // rcv client certificate -var CKE = 2; // rcv client key exchange -var CCV = 3; // rcv certificate verify -var CCC = 4; // rcv change cipher spec -var CFI = 5; // rcv finished -var CAD = 6; // rcv application data -var CER = 7; // not expecting any messages at this point - -// map client current expect state and content type to function -var __ = tls.handleUnexpected; -var R0 = tls.handleChangeCipherSpec; -var R1 = tls.handleAlert; -var R2 = tls.handleHandshake; -var R3 = tls.handleApplicationData; -var R4 = tls.handleHeartbeat; -var ctTable = []; -ctTable[tls.ConnectionEnd.client] = [ -// CC,AL,HS,AD,HB -/*SHE*/[__,R1,R2,__,R4], -/*SCE*/[__,R1,R2,__,R4], -/*SKE*/[__,R1,R2,__,R4], -/*SCR*/[__,R1,R2,__,R4], -/*SHD*/[__,R1,R2,__,R4], -/*SCC*/[R0,R1,__,__,R4], -/*SFI*/[__,R1,R2,__,R4], -/*SAD*/[__,R1,R2,R3,R4], -/*SER*/[__,R1,R2,__,R4] -]; - -// map server current expect state and content type to function -ctTable[tls.ConnectionEnd.server] = [ -// CC,AL,HS,AD -/*CHE*/[__,R1,R2,__,R4], -/*CCE*/[__,R1,R2,__,R4], -/*CKE*/[__,R1,R2,__,R4], -/*CCV*/[__,R1,R2,__,R4], -/*CCC*/[R0,R1,__,__,R4], -/*CFI*/[__,R1,R2,__,R4], -/*CAD*/[__,R1,R2,R3,R4], -/*CER*/[__,R1,R2,__,R4] -]; - -// map client current expect state and handshake type to function -var H0 = tls.handleHelloRequest; -var H1 = tls.handleServerHello; -var H2 = tls.handleCertificate; -var H3 = tls.handleServerKeyExchange; -var H4 = tls.handleCertificateRequest; -var H5 = tls.handleServerHelloDone; -var H6 = tls.handleFinished; -var hsTable = []; -hsTable[tls.ConnectionEnd.client] = [ -// HR,01,SH,03,04,05,06,07,08,09,10,SC,SK,CR,HD,15,CK,17,18,19,FI -/*SHE*/[__,__,H1,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], -/*SCE*/[H0,__,__,__,__,__,__,__,__,__,__,H2,H3,H4,H5,__,__,__,__,__,__], -/*SKE*/[H0,__,__,__,__,__,__,__,__,__,__,__,H3,H4,H5,__,__,__,__,__,__], -/*SCR*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,H4,H5,__,__,__,__,__,__], -/*SHD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,H5,__,__,__,__,__,__], -/*SCC*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], -/*SFI*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6], -/*SAD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], -/*SER*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__] -]; - -// map server current expect state and handshake type to function -// Note: CAD[CH] does not map to FB because renegotation is prohibited -var H7 = tls.handleClientHello; -var H8 = tls.handleClientKeyExchange; -var H9 = tls.handleCertificateVerify; -hsTable[tls.ConnectionEnd.server] = [ -// 01,CH,02,03,04,05,06,07,08,09,10,CC,12,13,14,CV,CK,17,18,19,FI -/*CHE*/[__,H7,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], -/*CCE*/[__,__,__,__,__,__,__,__,__,__,__,H2,__,__,__,__,__,__,__,__,__], -/*CKE*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H8,__,__,__,__], -/*CCV*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H9,__,__,__,__,__], -/*CCC*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], -/*CFI*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6], -/*CAD*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__], -/*CER*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__] -]; - -/** - * Generates the master_secret and keys using the given security parameters. - * - * The security parameters for a TLS connection state are defined as such: - * - * struct { - * ConnectionEnd entity; - * PRFAlgorithm prf_algorithm; - * BulkCipherAlgorithm bulk_cipher_algorithm; - * CipherType cipher_type; - * uint8 enc_key_length; - * uint8 block_length; - * uint8 fixed_iv_length; - * uint8 record_iv_length; - * MACAlgorithm mac_algorithm; - * uint8 mac_length; - * uint8 mac_key_length; - * CompressionMethod compression_algorithm; - * opaque master_secret[48]; - * opaque client_random[32]; - * opaque server_random[32]; - * } SecurityParameters; - * - * Note that this definition is from TLS 1.2. In TLS 1.0 some of these - * parameters are ignored because, for instance, the PRFAlgorithm is a - * builtin-fixed algorithm combining iterations of MD5 and SHA-1 in TLS 1.0. - * - * The Record Protocol requires an algorithm to generate keys required by the - * current connection state. - * - * The master secret is expanded into a sequence of secure bytes, which is then - * split to a client write MAC key, a server write MAC key, a client write - * encryption key, and a server write encryption key. In TLS 1.0 a client write - * IV and server write IV are also generated. Each of these is generated from - * the byte sequence in that order. Unused values are empty. In TLS 1.2, some - * AEAD ciphers may additionally require a client write IV and a server write - * IV (see Section 6.2.3.3). - * - * When keys, MAC keys, and IVs are generated, the master secret is used as an - * entropy source. - * - * To generate the key material, compute: - * - * master_secret = PRF(pre_master_secret, "master secret", - * ClientHello.random + ServerHello.random) - * - * key_block = PRF(SecurityParameters.master_secret, - * "key expansion", - * SecurityParameters.server_random + - * SecurityParameters.client_random); - * - * until enough output has been generated. Then, the key_block is - * partitioned as follows: - * - * client_write_MAC_key[SecurityParameters.mac_key_length] - * server_write_MAC_key[SecurityParameters.mac_key_length] - * client_write_key[SecurityParameters.enc_key_length] - * server_write_key[SecurityParameters.enc_key_length] - * client_write_IV[SecurityParameters.fixed_iv_length] - * server_write_IV[SecurityParameters.fixed_iv_length] - * - * In TLS 1.2, the client_write_IV and server_write_IV are only generated for - * implicit nonce techniques as described in Section 3.2.1 of [AEAD]. This - * implementation uses TLS 1.0 so IVs are generated. - * - * Implementation note: The currently defined cipher suite which requires the - * most material is AES_256_CBC_SHA256. It requires 2 x 32 byte keys and 2 x 32 - * byte MAC keys, for a total 128 bytes of key material. In TLS 1.0 it also - * requires 2 x 16 byte IVs, so it actually takes 160 bytes of key material. - * - * @param c the connection. - * @param sp the security parameters to use. - * - * @return the security keys. - */ -tls.generateKeys = function(c, sp) { - // TLS_RSA_WITH_AES_128_CBC_SHA (required to be compliant with TLS 1.2) & - // TLS_RSA_WITH_AES_256_CBC_SHA are the only cipher suites implemented - // at present - - // TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is required to be compliant with - // TLS 1.0 but we don't care right now because AES is better and we have - // an implementation for it - - // TODO: TLS 1.2 implementation - /* - // determine the PRF - var prf; - switch(sp.prf_algorithm) { - case tls.PRFAlgorithm.tls_prf_sha256: - prf = prf_sha256; - break; - default: - // should never happen - throw new Error('Invalid PRF'); - } - */ - - // TLS 1.0/1.1 implementation - var prf = prf_TLS1; - - // concatenate server and client random - var random = sp.client_random + sp.server_random; - - // only create master secret if session is new - if(!c.session.resuming) { - // create master secret, clean up pre-master secret - sp.master_secret = prf( - sp.pre_master_secret, 'master secret', random, 48).bytes(); - sp.pre_master_secret = null; - } - - // generate the amount of key material needed - random = sp.server_random + sp.client_random; - var length = 2 * sp.mac_key_length + 2 * sp.enc_key_length; - - // include IV for TLS/1.0 - var tls10 = (c.version.major === tls.Versions.TLS_1_0.major && - c.version.minor === tls.Versions.TLS_1_0.minor); - if(tls10) { - length += 2 * sp.fixed_iv_length; - } - var km = prf(sp.master_secret, 'key expansion', random, length); - - // split the key material into the MAC and encryption keys - var rval = { - client_write_MAC_key: km.getBytes(sp.mac_key_length), - server_write_MAC_key: km.getBytes(sp.mac_key_length), - client_write_key: km.getBytes(sp.enc_key_length), - server_write_key: km.getBytes(sp.enc_key_length) - }; - - // include TLS 1.0 IVs - if(tls10) { - rval.client_write_IV = km.getBytes(sp.fixed_iv_length); - rval.server_write_IV = km.getBytes(sp.fixed_iv_length); - } - - return rval; -}; - -/** - * Creates a new initialized TLS connection state. A connection state has - * a read mode and a write mode. - * - * compression state: - * The current state of the compression algorithm. - * - * cipher state: - * The current state of the encryption algorithm. This will consist of the - * scheduled key for that connection. For stream ciphers, this will also - * contain whatever state information is necessary to allow the stream to - * continue to encrypt or decrypt data. - * - * MAC key: - * The MAC key for the connection. - * - * sequence number: - * Each connection state contains a sequence number, which is maintained - * separately for read and write states. The sequence number MUST be set to - * zero whenever a connection state is made the active state. Sequence - * numbers are of type uint64 and may not exceed 2^64-1. Sequence numbers do - * not wrap. If a TLS implementation would need to wrap a sequence number, - * it must renegotiate instead. A sequence number is incremented after each - * record: specifically, the first record transmitted under a particular - * connection state MUST use sequence number 0. - * - * @param c the connection. - * - * @return the new initialized TLS connection state. - */ -tls.createConnectionState = function(c) { - var client = (c.entity === tls.ConnectionEnd.client); - - var createMode = function() { - var mode = { - // two 32-bit numbers, first is most significant - sequenceNumber: [0, 0], - macKey: null, - macLength: 0, - macFunction: null, - cipherState: null, - cipherFunction: function(record) {return true;}, - compressionState: null, - compressFunction: function(record) {return true;}, - updateSequenceNumber: function() { - if(mode.sequenceNumber[1] === 0xFFFFFFFF) { - mode.sequenceNumber[1] = 0; - ++mode.sequenceNumber[0]; - } else { - ++mode.sequenceNumber[1]; - } - } - }; - return mode; - }; - var state = { - read: createMode(), - write: createMode() - }; - - // update function in read mode will decrypt then decompress a record - state.read.update = function(c, record) { - if(!state.read.cipherFunction(record, state.read)) { - c.error(c, { - message: 'Could not decrypt record or bad MAC.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - // doesn't matter if decryption failed or MAC was - // invalid, return the same error so as not to reveal - // which one occurred - description: tls.Alert.Description.bad_record_mac - } - }); - } else if(!state.read.compressFunction(c, record, state.read)) { - c.error(c, { - message: 'Could not decompress record.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.decompression_failure - } - }); - } - return !c.fail; - }; - - // update function in write mode will compress then encrypt a record - state.write.update = function(c, record) { - if(!state.write.compressFunction(c, record, state.write)) { - // error, but do not send alert since it would require - // compression as well - c.error(c, { - message: 'Could not compress record.', - send: false, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.internal_error - } - }); - } else if(!state.write.cipherFunction(record, state.write)) { - // error, but do not send alert since it would require - // encryption as well - c.error(c, { - message: 'Could not encrypt record.', - send: false, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.internal_error - } - }); - } - return !c.fail; - }; - - // handle security parameters - if(c.session) { - var sp = c.session.sp; - c.session.cipherSuite.initSecurityParameters(sp); - - // generate keys - sp.keys = tls.generateKeys(c, sp); - state.read.macKey = client ? - sp.keys.server_write_MAC_key : sp.keys.client_write_MAC_key; - state.write.macKey = client ? - sp.keys.client_write_MAC_key : sp.keys.server_write_MAC_key; - - // cipher suite setup - c.session.cipherSuite.initConnectionState(state, c, sp); - - // compression setup - switch(sp.compression_algorithm) { - case tls.CompressionMethod.none: - break; - case tls.CompressionMethod.deflate: - state.read.compressFunction = inflate; - state.write.compressFunction = deflate; - break; - default: - throw new Error('Unsupported compression algorithm.'); - } - } - - return state; -}; - -/** - * Creates a Random structure. - * - * struct { - * uint32 gmt_unix_time; - * opaque random_bytes[28]; - * } Random; - * - * gmt_unix_time: - * The current time and date in standard UNIX 32-bit format (seconds since - * the midnight starting Jan 1, 1970, UTC, ignoring leap seconds) according - * to the sender's internal clock. Clocks are not required to be set - * correctly by the basic TLS protocol; higher-level or application - * protocols may define additional requirements. Note that, for historical - * reasons, the data element is named using GMT, the predecessor of the - * current worldwide time base, UTC. - * random_bytes: - * 28 bytes generated by a secure random number generator. - * - * @return the Random structure as a byte array. - */ -tls.createRandom = function() { - // get UTC milliseconds - var d = new Date(); - var utc = +d + d.getTimezoneOffset() * 60000; - var rval = forge.util.createBuffer(); - rval.putInt32(utc); - rval.putBytes(forge.random.getBytes(28)); - return rval; -}; - -/** - * Creates a TLS record with the given type and data. - * - * @param c the connection. - * @param options: - * type: the record type. - * data: the plain text data in a byte buffer. - * - * @return the created record. - */ -tls.createRecord = function(c, options) { - if(!options.data) { - return null; - } - var record = { - type: options.type, - version: { - major: c.version.major, - minor: c.version.minor - }, - length: options.data.length(), - fragment: options.data - }; - return record; -}; - -/** - * Creates a TLS alert record. - * - * @param c the connection. - * @param alert: - * level: the TLS alert level. - * description: the TLS alert description. - * - * @return the created alert record. - */ -tls.createAlert = function(c, alert) { - var b = forge.util.createBuffer(); - b.putByte(alert.level); - b.putByte(alert.description); - return tls.createRecord(c, { - type: tls.ContentType.alert, - data: b - }); -}; - -/* The structure of a TLS handshake message. - * - * struct { - * HandshakeType msg_type; // handshake type - * uint24 length; // bytes in message - * select(HandshakeType) { - * case hello_request: HelloRequest; - * case client_hello: ClientHello; - * case server_hello: ServerHello; - * case certificate: Certificate; - * case server_key_exchange: ServerKeyExchange; - * case certificate_request: CertificateRequest; - * case server_hello_done: ServerHelloDone; - * case certificate_verify: CertificateVerify; - * case client_key_exchange: ClientKeyExchange; - * case finished: Finished; - * } body; - * } Handshake; - */ - -/** - * Creates a ClientHello message. - * - * opaque SessionID<0..32>; - * enum { null(0), deflate(1), (255) } CompressionMethod; - * uint8 CipherSuite[2]; - * - * struct { - * ProtocolVersion client_version; - * Random random; - * SessionID session_id; - * CipherSuite cipher_suites<2..2^16-2>; - * CompressionMethod compression_methods<1..2^8-1>; - * select(extensions_present) { - * case false: - * struct {}; - * case true: - * Extension extensions<0..2^16-1>; - * }; - * } ClientHello; - * - * The extension format for extended client hellos and server hellos is: - * - * struct { - * ExtensionType extension_type; - * opaque extension_data<0..2^16-1>; - * } Extension; - * - * Here: - * - * - "extension_type" identifies the particular extension type. - * - "extension_data" contains information specific to the particular - * extension type. - * - * The extension types defined in this document are: - * - * enum { - * server_name(0), max_fragment_length(1), - * client_certificate_url(2), trusted_ca_keys(3), - * truncated_hmac(4), status_request(5), (65535) - * } ExtensionType; - * - * @param c the connection. - * - * @return the ClientHello byte buffer. - */ -tls.createClientHello = function(c) { - // save hello version - c.session.clientHelloVersion = { - major: c.version.major, - minor: c.version.minor - }; - - // create supported cipher suites - var cipherSuites = forge.util.createBuffer(); - for(var i = 0; i < c.cipherSuites.length; ++i) { - var cs = c.cipherSuites[i]; - cipherSuites.putByte(cs.id[0]); - cipherSuites.putByte(cs.id[1]); - } - var cSuites = cipherSuites.length(); - - // create supported compression methods, null always supported, but - // also support deflate if connection has inflate and deflate methods - var compressionMethods = forge.util.createBuffer(); - compressionMethods.putByte(tls.CompressionMethod.none); - // FIXME: deflate support disabled until issues with raw deflate data - // without zlib headers are resolved - /* - if(c.inflate !== null && c.deflate !== null) { - compressionMethods.putByte(tls.CompressionMethod.deflate); - } - */ - var cMethods = compressionMethods.length(); - - // create TLS SNI (server name indication) extension if virtual host - // has been specified, see RFC 3546 - var extensions = forge.util.createBuffer(); - if(c.virtualHost) { - // create extension struct - var ext = forge.util.createBuffer(); - ext.putByte(0x00); // type server_name (ExtensionType is 2 bytes) - ext.putByte(0x00); - - /* In order to provide the server name, clients MAY include an - * extension of type "server_name" in the (extended) client hello. - * The "extension_data" field of this extension SHALL contain - * "ServerNameList" where: - * - * struct { - * NameType name_type; - * select(name_type) { - * case host_name: HostName; - * } name; - * } ServerName; - * - * enum { - * host_name(0), (255) - * } NameType; - * - * opaque HostName<1..2^16-1>; - * - * struct { - * ServerName server_name_list<1..2^16-1> - * } ServerNameList; - */ - var serverName = forge.util.createBuffer(); - serverName.putByte(0x00); // type host_name - writeVector(serverName, 2, forge.util.createBuffer(c.virtualHost)); - - // ServerNameList is in extension_data - var snList = forge.util.createBuffer(); - writeVector(snList, 2, serverName); - writeVector(ext, 2, snList); - extensions.putBuffer(ext); - } - var extLength = extensions.length(); - if(extLength > 0) { - // add extension vector length - extLength += 2; - } - - // determine length of the handshake message - // cipher suites and compression methods size will need to be - // updated if more get added to the list - var sessionId = c.session.id; - var length = - sessionId.length + 1 + // session ID vector - 2 + // version (major + minor) - 4 + 28 + // random time and random bytes - 2 + cSuites + // cipher suites vector - 1 + cMethods + // compression methods vector - extLength; // extensions vector - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.client_hello); - rval.putInt24(length); // handshake length - rval.putByte(c.version.major); // major version - rval.putByte(c.version.minor); // minor version - rval.putBytes(c.session.sp.client_random); // random time + bytes - writeVector(rval, 1, forge.util.createBuffer(sessionId)); - writeVector(rval, 2, cipherSuites); - writeVector(rval, 1, compressionMethods); - if(extLength > 0) { - writeVector(rval, 2, extensions); - } - return rval; -}; - -/** - * Creates a ServerHello message. - * - * @param c the connection. - * - * @return the ServerHello byte buffer. - */ -tls.createServerHello = function(c) { - // determine length of the handshake message - var sessionId = c.session.id; - var length = - sessionId.length + 1 + // session ID vector - 2 + // version (major + minor) - 4 + 28 + // random time and random bytes - 2 + // chosen cipher suite - 1; // chosen compression method - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.server_hello); - rval.putInt24(length); // handshake length - rval.putByte(c.version.major); // major version - rval.putByte(c.version.minor); // minor version - rval.putBytes(c.session.sp.server_random); // random time + bytes - writeVector(rval, 1, forge.util.createBuffer(sessionId)); - rval.putByte(c.session.cipherSuite.id[0]); - rval.putByte(c.session.cipherSuite.id[1]); - rval.putByte(c.session.compressionMethod); - return rval; -}; - -/** - * Creates a Certificate message. - * - * When this message will be sent: - * This is the first message the client can send after receiving a server - * hello done message and the first message the server can send after - * sending a ServerHello. This client message is only sent if the server - * requests a certificate. If no suitable certificate is available, the - * client should send a certificate message containing no certificates. If - * client authentication is required by the server for the handshake to - * continue, it may respond with a fatal handshake failure alert. - * - * opaque ASN.1Cert<1..2^24-1>; - * - * struct { - * ASN.1Cert certificate_list<0..2^24-1>; - * } Certificate; - * - * @param c the connection. - * - * @return the Certificate byte buffer. - */ -tls.createCertificate = function(c) { - // TODO: check certificate request to ensure types are supported - - // get a certificate (a certificate as a PEM string) - var client = (c.entity === tls.ConnectionEnd.client); - var cert = null; - if(c.getCertificate) { - var hint; - if(client) { - hint = c.session.certificateRequest; - } else { - hint = c.session.extensions.server_name.serverNameList; - } - cert = c.getCertificate(c, hint); - } - - // buffer to hold certificate list - var certList = forge.util.createBuffer(); - if(cert !== null) { - try { - // normalize cert to a chain of certificates - if(!forge.util.isArray(cert)) { - cert = [cert]; - } - var asn1 = null; - for(var i = 0; i < cert.length; ++i) { - var msg = forge.pem.decode(cert[i])[0]; - if(msg.type !== 'CERTIFICATE' && - msg.type !== 'X509 CERTIFICATE' && - msg.type !== 'TRUSTED CERTIFICATE') { - var error = new Error('Could not convert certificate from PEM; PEM ' + - 'header type is not "CERTIFICATE", "X509 CERTIFICATE", or ' + - '"TRUSTED CERTIFICATE".'); - error.headerType = msg.type; - throw error; - } - if(msg.procType && msg.procType.type === 'ENCRYPTED') { - throw new Error('Could not convert certificate from PEM; PEM is encrypted.'); - } - - var der = forge.util.createBuffer(msg.body); - if(asn1 === null) { - asn1 = forge.asn1.fromDer(der.bytes(), false); - } - - // certificate entry is itself a vector with 3 length bytes - var certBuffer = forge.util.createBuffer(); - writeVector(certBuffer, 3, der); - - // add cert vector to cert list vector - certList.putBuffer(certBuffer); - } - - // save certificate - cert = forge.pki.certificateFromAsn1(asn1); - if(client) { - c.session.clientCertificate = cert; - } else { - c.session.serverCertificate = cert; - } - } catch(ex) { - return c.error(c, { - message: 'Could not send certificate list.', - cause: ex, - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.bad_certificate - } - }); - } - } - - // determine length of the handshake message - var length = 3 + certList.length(); // cert list vector - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.certificate); - rval.putInt24(length); - writeVector(rval, 3, certList); - return rval; -}; - -/** - * Creates a ClientKeyExchange message. - * - * When this message will be sent: - * This message is always sent by the client. It will immediately follow the - * client certificate message, if it is sent. Otherwise it will be the first - * message sent by the client after it receives the server hello done - * message. - * - * Meaning of this message: - * With this message, the premaster secret is set, either though direct - * transmission of the RSA-encrypted secret, or by the transmission of - * Diffie-Hellman parameters which will allow each side to agree upon the - * same premaster secret. When the key exchange method is DH_RSA or DH_DSS, - * client certification has been requested, and the client was able to - * respond with a certificate which contained a Diffie-Hellman public key - * whose parameters (group and generator) matched those specified by the - * server in its certificate, this message will not contain any data. - * - * Meaning of this message: - * If RSA is being used for key agreement and authentication, the client - * generates a 48-byte premaster secret, encrypts it using the public key - * from the server's certificate or the temporary RSA key provided in a - * server key exchange message, and sends the result in an encrypted - * premaster secret message. This structure is a variant of the client - * key exchange message, not a message in itself. - * - * struct { - * select(KeyExchangeAlgorithm) { - * case rsa: EncryptedPreMasterSecret; - * case diffie_hellman: ClientDiffieHellmanPublic; - * } exchange_keys; - * } ClientKeyExchange; - * - * struct { - * ProtocolVersion client_version; - * opaque random[46]; - * } PreMasterSecret; - * - * struct { - * public-key-encrypted PreMasterSecret pre_master_secret; - * } EncryptedPreMasterSecret; - * - * A public-key-encrypted element is encoded as a vector <0..2^16-1>. - * - * @param c the connection. - * - * @return the ClientKeyExchange byte buffer. - */ -tls.createClientKeyExchange = function(c) { - // create buffer to encrypt - var b = forge.util.createBuffer(); - - // add highest client-supported protocol to help server avoid version - // rollback attacks - b.putByte(c.session.clientHelloVersion.major); - b.putByte(c.session.clientHelloVersion.minor); - - // generate and add 46 random bytes - b.putBytes(forge.random.getBytes(46)); - - // save pre-master secret - var sp = c.session.sp; - sp.pre_master_secret = b.getBytes(); - - // RSA-encrypt the pre-master secret - var key = c.session.serverCertificate.publicKey; - b = key.encrypt(sp.pre_master_secret); - - /* Note: The encrypted pre-master secret will be stored in a - public-key-encrypted opaque vector that has the length prefixed using - 2 bytes, so include those 2 bytes in the handshake message length. This - is done as a minor optimization instead of calling writeVector(). */ - - // determine length of the handshake message - var length = b.length + 2; - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.client_key_exchange); - rval.putInt24(length); - // add vector length bytes - rval.putInt16(b.length); - rval.putBytes(b); - return rval; -}; - -/** - * Creates a ServerKeyExchange message. - * - * @param c the connection. - * - * @return the ServerKeyExchange byte buffer. - */ -tls.createServerKeyExchange = function(c) { - // this implementation only supports RSA, no Diffie-Hellman support, - // so this record is empty - - // determine length of the handshake message - var length = 0; - - // build record fragment - var rval = forge.util.createBuffer(); - if(length > 0) { - rval.putByte(tls.HandshakeType.server_key_exchange); - rval.putInt24(length); - } - return rval; -}; - -/** - * Gets the signed data used to verify a client-side certificate. See - * tls.createCertificateVerify() for details. - * - * @param c the connection. - * @param callback the callback to call once the signed data is ready. - */ -tls.getClientSignature = function(c, callback) { - // generate data to RSA encrypt - var b = forge.util.createBuffer(); - b.putBuffer(c.session.md5.digest()); - b.putBuffer(c.session.sha1.digest()); - b = b.getBytes(); - - // create default signing function as necessary - c.getSignature = c.getSignature || function(c, b, callback) { - // do rsa encryption, call callback - var privateKey = null; - if(c.getPrivateKey) { - try { - privateKey = c.getPrivateKey(c, c.session.clientCertificate); - privateKey = forge.pki.privateKeyFromPem(privateKey); - } catch(ex) { - c.error(c, { - message: 'Could not get private key.', - cause: ex, - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.internal_error - } - }); - } - } - if(privateKey === null) { - c.error(c, { - message: 'No private key set.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.internal_error - } - }); - } else { - b = privateKey.sign(b, null); - } - callback(c, b); - }; - - // get client signature - c.getSignature(c, b, callback); -}; - -/** - * Creates a CertificateVerify message. - * - * Meaning of this message: - * This structure conveys the client's Diffie-Hellman public value - * (Yc) if it was not already included in the client's certificate. - * The encoding used for Yc is determined by the enumerated - * PublicValueEncoding. This structure is a variant of the client - * key exchange message, not a message in itself. - * - * When this message will be sent: - * This message is used to provide explicit verification of a client - * certificate. This message is only sent following a client - * certificate that has signing capability (i.e. all certificates - * except those containing fixed Diffie-Hellman parameters). When - * sent, it will immediately follow the client key exchange message. - * - * struct { - * Signature signature; - * } CertificateVerify; - * - * CertificateVerify.signature.md5_hash - * MD5(handshake_messages); - * - * Certificate.signature.sha_hash - * SHA(handshake_messages); - * - * Here handshake_messages refers to all handshake messages sent or - * received starting at client hello up to but not including this - * message, including the type and length fields of the handshake - * messages. - * - * select(SignatureAlgorithm) { - * case anonymous: struct { }; - * case rsa: - * digitally-signed struct { - * opaque md5_hash[16]; - * opaque sha_hash[20]; - * }; - * case dsa: - * digitally-signed struct { - * opaque sha_hash[20]; - * }; - * } Signature; - * - * In digital signing, one-way hash functions are used as input for a - * signing algorithm. A digitally-signed element is encoded as an opaque - * vector <0..2^16-1>, where the length is specified by the signing - * algorithm and key. - * - * In RSA signing, a 36-byte structure of two hashes (one SHA and one - * MD5) is signed (encrypted with the private key). It is encoded with - * PKCS #1 block type 0 or type 1 as described in [PKCS1]. - * - * In DSS, the 20 bytes of the SHA hash are run directly through the - * Digital Signing Algorithm with no additional hashing. - * - * @param c the connection. - * @param signature the signature to include in the message. - * - * @return the CertificateVerify byte buffer. - */ -tls.createCertificateVerify = function(c, signature) { - /* Note: The signature will be stored in a "digitally-signed" opaque - vector that has the length prefixed using 2 bytes, so include those - 2 bytes in the handshake message length. This is done as a minor - optimization instead of calling writeVector(). */ - - // determine length of the handshake message - var length = signature.length + 2; - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.certificate_verify); - rval.putInt24(length); - // add vector length bytes - rval.putInt16(signature.length); - rval.putBytes(signature); - return rval; -}; - -/** - * Creates a CertificateRequest message. - * - * @param c the connection. - * - * @return the CertificateRequest byte buffer. - */ -tls.createCertificateRequest = function(c) { - // TODO: support other certificate types - var certTypes = forge.util.createBuffer(); - - // common RSA certificate type - certTypes.putByte(0x01); - - // TODO: verify that this data format is correct - // add distinguished names from CA store - var cAs = forge.util.createBuffer(); - for(var key in c.caStore.certs) { - var cert = c.caStore.certs[key]; - var dn = forge.pki.distinguishedNameToAsn1(cert.subject); - cAs.putBuffer(forge.asn1.toDer(dn)); - } - - // TODO: TLS 1.2+ has a different format - - // determine length of the handshake message - var length = - 1 + certTypes.length() + - 2 + cAs.length(); - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.certificate_request); - rval.putInt24(length); - writeVector(rval, 1, certTypes); - writeVector(rval, 2, cAs); - return rval; -}; - -/** - * Creates a ServerHelloDone message. - * - * @param c the connection. - * - * @return the ServerHelloDone byte buffer. - */ -tls.createServerHelloDone = function(c) { - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.server_hello_done); - rval.putInt24(0); - return rval; -}; - -/** - * Creates a ChangeCipherSpec message. - * - * The change cipher spec protocol exists to signal transitions in - * ciphering strategies. The protocol consists of a single message, - * which is encrypted and compressed under the current (not the pending) - * connection state. The message consists of a single byte of value 1. - * - * struct { - * enum { change_cipher_spec(1), (255) } type; - * } ChangeCipherSpec; - * - * @return the ChangeCipherSpec byte buffer. - */ -tls.createChangeCipherSpec = function() { - var rval = forge.util.createBuffer(); - rval.putByte(0x01); - return rval; -}; - -/** - * Creates a Finished message. - * - * struct { - * opaque verify_data[12]; - * } Finished; - * - * verify_data - * PRF(master_secret, finished_label, MD5(handshake_messages) + - * SHA-1(handshake_messages)) [0..11]; - * - * finished_label - * For Finished messages sent by the client, the string "client - * finished". For Finished messages sent by the server, the - * string "server finished". - * - * handshake_messages - * All of the data from all handshake messages up to but not - * including this message. This is only data visible at the - * handshake layer and does not include record layer headers. - * This is the concatenation of all the Handshake structures as - * defined in 7.4 exchanged thus far. - * - * @param c the connection. - * - * @return the Finished byte buffer. - */ -tls.createFinished = function(c) { - // generate verify_data - var b = forge.util.createBuffer(); - b.putBuffer(c.session.md5.digest()); - b.putBuffer(c.session.sha1.digest()); - - // TODO: determine prf function and verify length for TLS 1.2 - var client = (c.entity === tls.ConnectionEnd.client); - var sp = c.session.sp; - var vdl = 12; - var prf = prf_TLS1; - var label = client ? 'client finished' : 'server finished'; - b = prf(sp.master_secret, label, b.getBytes(), vdl); - - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(tls.HandshakeType.finished); - rval.putInt24(b.length()); - rval.putBuffer(b); - return rval; -}; - -/** - * Creates a HeartbeatMessage (See RFC 6520). - * - * struct { - * HeartbeatMessageType type; - * uint16 payload_length; - * opaque payload[HeartbeatMessage.payload_length]; - * opaque padding[padding_length]; - * } HeartbeatMessage; - * - * The total length of a HeartbeatMessage MUST NOT exceed 2^14 or - * max_fragment_length when negotiated as defined in [RFC6066]. - * - * type: The message type, either heartbeat_request or heartbeat_response. - * - * payload_length: The length of the payload. - * - * payload: The payload consists of arbitrary content. - * - * padding: The padding is random content that MUST be ignored by the - * receiver. The length of a HeartbeatMessage is TLSPlaintext.length - * for TLS and DTLSPlaintext.length for DTLS. Furthermore, the - * length of the type field is 1 byte, and the length of the - * payload_length is 2. Therefore, the padding_length is - * TLSPlaintext.length - payload_length - 3 for TLS and - * DTLSPlaintext.length - payload_length - 3 for DTLS. The - * padding_length MUST be at least 16. - * - * The sender of a HeartbeatMessage MUST use a random padding of at - * least 16 bytes. The padding of a received HeartbeatMessage message - * MUST be ignored. - * - * If the payload_length of a received HeartbeatMessage is too large, - * the received HeartbeatMessage MUST be discarded silently. - * - * @param c the connection. - * @param type the tls.HeartbeatMessageType. - * @param payload the heartbeat data to send as the payload. - * @param [payloadLength] the payload length to use, defaults to the - * actual payload length. - * - * @return the HeartbeatRequest byte buffer. - */ -tls.createHeartbeat = function(type, payload, payloadLength) { - if(typeof payloadLength === 'undefined') { - payloadLength = payload.length; - } - // build record fragment - var rval = forge.util.createBuffer(); - rval.putByte(type); // heartbeat message type - rval.putInt16(payloadLength); // payload length - rval.putBytes(payload); // payload - // padding - var plaintextLength = rval.length(); - var paddingLength = Math.max(16, plaintextLength - payloadLength - 3); - rval.putBytes(forge.random.getBytes(paddingLength)); - return rval; -}; - -/** - * Fragments, compresses, encrypts, and queues a record for delivery. - * - * @param c the connection. - * @param record the record to queue. - */ -tls.queue = function(c, record) { - // error during record creation - if(!record) { - return; - } - - // if the record is a handshake record, update handshake hashes - if(record.type === tls.ContentType.handshake) { - var bytes = record.fragment.bytes(); - c.session.md5.update(bytes); - c.session.sha1.update(bytes); - bytes = null; - } - - // handle record fragmentation - var records; - if(record.fragment.length() <= tls.MaxFragment) { - records = [record]; - } else { - // fragment data as long as it is too long - records = []; - var data = record.fragment.bytes(); - while(data.length > tls.MaxFragment) { - records.push(tls.createRecord(c, { - type: record.type, - data: forge.util.createBuffer(data.slice(0, tls.MaxFragment)) - })); - data = data.slice(tls.MaxFragment); - } - // add last record - if(data.length > 0) { - records.push(tls.createRecord(c, { - type: record.type, - data: forge.util.createBuffer(data) - })); - } - } - - // compress and encrypt all fragmented records - for(var i = 0; i < records.length && !c.fail; ++i) { - // update the record using current write state - var rec = records[i]; - var s = c.state.current.write; - if(s.update(c, rec)) { - // store record - c.records.push(rec); - } - } -}; - -/** - * Flushes all queued records to the output buffer and calls the - * tlsDataReady() handler on the given connection. - * - * @param c the connection. - * - * @return true on success, false on failure. - */ -tls.flush = function(c) { - for(var i = 0; i < c.records.length; ++i) { - var record = c.records[i]; - - // add record header and fragment - c.tlsData.putByte(record.type); - c.tlsData.putByte(record.version.major); - c.tlsData.putByte(record.version.minor); - c.tlsData.putInt16(record.fragment.length()); - c.tlsData.putBuffer(c.records[i].fragment); - } - c.records = []; - return c.tlsDataReady(c); -}; - -/** - * Maps a pki.certificateError to a tls.Alert.Description. - * - * @param error the error to map. - * - * @return the alert description. - */ -var _certErrorToAlertDesc = function(error) { - switch(error) { - case true: - return true; - case forge.pki.certificateError.bad_certificate: - return tls.Alert.Description.bad_certificate; - case forge.pki.certificateError.unsupported_certificate: - return tls.Alert.Description.unsupported_certificate; - case forge.pki.certificateError.certificate_revoked: - return tls.Alert.Description.certificate_revoked; - case forge.pki.certificateError.certificate_expired: - return tls.Alert.Description.certificate_expired; - case forge.pki.certificateError.certificate_unknown: - return tls.Alert.Description.certificate_unknown; - case forge.pki.certificateError.unknown_ca: - return tls.Alert.Description.unknown_ca; - default: - return tls.Alert.Description.bad_certificate; - } -}; - -/** - * Maps a tls.Alert.Description to a pki.certificateError. - * - * @param desc the alert description. - * - * @return the certificate error. - */ -var _alertDescToCertError = function(desc) { - switch(desc) { - case true: - return true; - case tls.Alert.Description.bad_certificate: - return forge.pki.certificateError.bad_certificate; - case tls.Alert.Description.unsupported_certificate: - return forge.pki.certificateError.unsupported_certificate; - case tls.Alert.Description.certificate_revoked: - return forge.pki.certificateError.certificate_revoked; - case tls.Alert.Description.certificate_expired: - return forge.pki.certificateError.certificate_expired; - case tls.Alert.Description.certificate_unknown: - return forge.pki.certificateError.certificate_unknown; - case tls.Alert.Description.unknown_ca: - return forge.pki.certificateError.unknown_ca; - default: - return forge.pki.certificateError.bad_certificate; - } -}; - -/** - * Verifies a certificate chain against the given connection's - * Certificate Authority store. - * - * @param c the TLS connection. - * @param chain the certificate chain to verify, with the root or highest - * authority at the end. - * - * @return true if successful, false if not. - */ -tls.verifyCertificateChain = function(c, chain) { - try { - // verify chain - forge.pki.verifyCertificateChain(c.caStore, chain, - function verify(vfd, depth, chain) { - // convert pki.certificateError to tls alert description - var desc = _certErrorToAlertDesc(vfd); - - // call application callback - var ret = c.verify(c, vfd, depth, chain); - if(ret !== true) { - if(typeof ret === 'object' && !forge.util.isArray(ret)) { - // throw custom error - var error = new Error('The application rejected the certificate.'); - error.send = true; - error.alert = { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.bad_certificate - }; - if(ret.message) { - error.message = ret.message; - } - if(ret.alert) { - error.alert.description = ret.alert; - } - throw error; - } - - // convert tls alert description to pki.certificateError - if(ret !== vfd) { - ret = _alertDescToCertError(ret); - } - } - - return ret; - }); - } catch(ex) { - // build tls error if not already customized - var err = ex; - if(typeof err !== 'object' || forge.util.isArray(err)) { - err = { - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: _certErrorToAlertDesc(ex) - } - }; - } - if(!('send' in err)) { - err.send = true; - } - if(!('alert' in err)) { - err.alert = { - level: tls.Alert.Level.fatal, - description: _certErrorToAlertDesc(err.error) - }; - } - - // send error - c.error(c, err); - } - - return !c.fail; -}; - -/** - * Creates a new TLS session cache. - * - * @param cache optional map of session ID to cached session. - * @param capacity the maximum size for the cache (default: 100). - * - * @return the new TLS session cache. - */ -tls.createSessionCache = function(cache, capacity) { - var rval = null; - - // assume input is already a session cache object - if(cache && cache.getSession && cache.setSession && cache.order) { - rval = cache; - } else { - // create cache - rval = {}; - rval.cache = cache || {}; - rval.capacity = Math.max(capacity || 100, 1); - rval.order = []; - - // store order for sessions, delete session overflow - for(var key in cache) { - if(rval.order.length <= capacity) { - rval.order.push(key); - } else { - delete cache[key]; - } - } - - // get a session from a session ID (or get any session) - rval.getSession = function(sessionId) { - var session = null; - var key = null; - - // if session ID provided, use it - if(sessionId) { - key = forge.util.bytesToHex(sessionId); - } else if(rval.order.length > 0) { - // get first session from cache - key = rval.order[0]; - } - - if(key !== null && key in rval.cache) { - // get cached session and remove from cache - session = rval.cache[key]; - delete rval.cache[key]; - for(var i in rval.order) { - if(rval.order[i] === key) { - rval.order.splice(i, 1); - break; - } - } - } - - return session; - }; - - // set a session in the cache - rval.setSession = function(sessionId, session) { - // remove session from cache if at capacity - if(rval.order.length === rval.capacity) { - var key = rval.order.shift(); - delete rval.cache[key]; - } - // add session to cache - var key = forge.util.bytesToHex(sessionId); - rval.order.push(key); - rval.cache[key] = session; - }; - } - - return rval; -}; - -/** - * Creates a new TLS connection. - * - * See public createConnection() docs for more details. - * - * @param options the options for this connection. - * - * @return the new TLS connection. - */ -tls.createConnection = function(options) { - var caStore = null; - if(options.caStore) { - // if CA store is an array, convert it to a CA store object - if(forge.util.isArray(options.caStore)) { - caStore = forge.pki.createCaStore(options.caStore); - } else { - caStore = options.caStore; - } - } else { - // create empty CA store - caStore = forge.pki.createCaStore(); - } - - // setup default cipher suites - var cipherSuites = options.cipherSuites || null; - if(cipherSuites === null) { - cipherSuites = []; - for(var key in tls.CipherSuites) { - cipherSuites.push(tls.CipherSuites[key]); - } - } - - // set default entity - var entity = (options.server || false) ? - tls.ConnectionEnd.server : tls.ConnectionEnd.client; - - // create session cache if requested - var sessionCache = options.sessionCache ? - tls.createSessionCache(options.sessionCache) : null; - - // create TLS connection - var c = { - version: {major: tls.Version.major, minor: tls.Version.minor}, - entity: entity, - sessionId: options.sessionId, - caStore: caStore, - sessionCache: sessionCache, - cipherSuites: cipherSuites, - connected: options.connected, - virtualHost: options.virtualHost || null, - verifyClient: options.verifyClient || false, - verify: options.verify || function(cn, vfd, dpth, cts) {return vfd;}, - getCertificate: options.getCertificate || null, - getPrivateKey: options.getPrivateKey || null, - getSignature: options.getSignature || null, - input: forge.util.createBuffer(), - tlsData: forge.util.createBuffer(), - data: forge.util.createBuffer(), - tlsDataReady: options.tlsDataReady, - dataReady: options.dataReady, - heartbeatReceived: options.heartbeatReceived, - closed: options.closed, - error: function(c, ex) { - // set origin if not set - ex.origin = ex.origin || - ((c.entity === tls.ConnectionEnd.client) ? 'client' : 'server'); - - // send TLS alert - if(ex.send) { - tls.queue(c, tls.createAlert(c, ex.alert)); - tls.flush(c); - } - - // error is fatal by default - var fatal = (ex.fatal !== false); - if(fatal) { - // set fail flag - c.fail = true; - } - - // call error handler first - options.error(c, ex); - - if(fatal) { - // fatal error, close connection, do not clear fail - c.close(false); - } - }, - deflate: options.deflate || null, - inflate: options.inflate || null - }; - - /** - * Resets a closed TLS connection for reuse. Called in c.close(). - * - * @param clearFail true to clear the fail flag (default: true). - */ - c.reset = function(clearFail) { - c.version = {major: tls.Version.major, minor: tls.Version.minor}; - c.record = null; - c.session = null; - c.peerCertificate = null; - c.state = { - pending: null, - current: null - }; - c.expect = (c.entity === tls.ConnectionEnd.client) ? SHE : CHE; - c.fragmented = null; - c.records = []; - c.open = false; - c.handshakes = 0; - c.handshaking = false; - c.isConnected = false; - c.fail = !(clearFail || typeof(clearFail) === 'undefined'); - c.input.clear(); - c.tlsData.clear(); - c.data.clear(); - c.state.current = tls.createConnectionState(c); - }; - - // do initial reset of connection - c.reset(); - - /** - * Updates the current TLS engine state based on the given record. - * - * @param c the TLS connection. - * @param record the TLS record to act on. - */ - var _update = function(c, record) { - // get record handler (align type in table by subtracting lowest) - var aligned = record.type - tls.ContentType.change_cipher_spec; - var handlers = ctTable[c.entity][c.expect]; - if(aligned in handlers) { - handlers[aligned](c, record); - } else { - // unexpected record - tls.handleUnexpected(c, record); - } - }; - - /** - * Reads the record header and initializes the next record on the given - * connection. - * - * @param c the TLS connection with the next record. - * - * @return 0 if the input data could be processed, otherwise the - * number of bytes required for data to be processed. - */ - var _readRecordHeader = function(c) { - var rval = 0; - - // get input buffer and its length - var b = c.input; - var len = b.length(); - - // need at least 5 bytes to initialize a record - if(len < 5) { - rval = 5 - len; - } else { - // enough bytes for header - // initialize record - c.record = { - type: b.getByte(), - version: { - major: b.getByte(), - minor: b.getByte() - }, - length: b.getInt16(), - fragment: forge.util.createBuffer(), - ready: false - }; - - // check record version - var compatibleVersion = (c.record.version.major === c.version.major); - if(compatibleVersion && c.session && c.session.version) { - // session version already set, require same minor version - compatibleVersion = (c.record.version.minor === c.version.minor); - } - if(!compatibleVersion) { - c.error(c, { - message: 'Incompatible TLS version.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: tls.Alert.Description.protocol_version - } - }); - } - } - - return rval; - }; - - /** - * Reads the next record's contents and appends its message to any - * previously fragmented message. - * - * @param c the TLS connection with the next record. - * - * @return 0 if the input data could be processed, otherwise the - * number of bytes required for data to be processed. - */ - var _readRecord = function(c) { - var rval = 0; - - // ensure there is enough input data to get the entire record - var b = c.input; - var len = b.length(); - if(len < c.record.length) { - // not enough data yet, return how much is required - rval = c.record.length - len; - } else { - // there is enough data to parse the pending record - // fill record fragment and compact input buffer - c.record.fragment.putBytes(b.getBytes(c.record.length)); - b.compact(); - - // update record using current read state - var s = c.state.current.read; - if(s.update(c, c.record)) { - // see if there is a previously fragmented message that the - // new record's message fragment should be appended to - if(c.fragmented !== null) { - // if the record type matches a previously fragmented - // record, append the record fragment to it - if(c.fragmented.type === c.record.type) { - // concatenate record fragments - c.fragmented.fragment.putBuffer(c.record.fragment); - c.record = c.fragmented; - } else { - // error, invalid fragmented record - c.error(c, { - message: 'Invalid fragmented record.', - send: true, - alert: { - level: tls.Alert.Level.fatal, - description: - tls.Alert.Description.unexpected_message - } - }); - } - } - - // record is now ready - c.record.ready = true; - } - } - - return rval; - }; - - /** - * Performs a handshake using the TLS Handshake Protocol, as a client. - * - * This method should only be called if the connection is in client mode. - * - * @param sessionId the session ID to use, null to start a new one. - */ - c.handshake = function(sessionId) { - // error to call this in non-client mode - if(c.entity !== tls.ConnectionEnd.client) { - // not fatal error - c.error(c, { - message: 'Cannot initiate handshake as a server.', - fatal: false - }); - } else if(c.handshaking) { - // handshake is already in progress, fail but not fatal error - c.error(c, { - message: 'Handshake already in progress.', - fatal: false - }); - } else { - // clear fail flag on reuse - if(c.fail && !c.open && c.handshakes === 0) { - c.fail = false; - } - - // now handshaking - c.handshaking = true; - - // default to blank (new session) - sessionId = sessionId || ''; - - // if a session ID was specified, try to find it in the cache - var session = null; - if(sessionId.length > 0) { - if(c.sessionCache) { - session = c.sessionCache.getSession(sessionId); - } - - // matching session not found in cache, clear session ID - if(session === null) { - sessionId = ''; - } - } - - // no session given, grab a session from the cache, if available - if(sessionId.length === 0 && c.sessionCache) { - session = c.sessionCache.getSession(); - if(session !== null) { - sessionId = session.id; - } - } - - // set up session - c.session = { - id: sessionId, - version: null, - cipherSuite: null, - compressionMethod: null, - serverCertificate: null, - certificateRequest: null, - clientCertificate: null, - sp: {}, - md5: forge.md.md5.create(), - sha1: forge.md.sha1.create() - }; - - // use existing session information - if(session) { - // only update version on connection, session version not yet set - c.version = session.version; - c.session.sp = session.sp; - } - - // generate new client random - c.session.sp.client_random = tls.createRandom().getBytes(); - - // connection now open - c.open = true; - - // send hello - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.handshake, - data: tls.createClientHello(c) - })); - tls.flush(c); - } - }; - - /** - * Called when TLS protocol data has been received from somewhere and should - * be processed by the TLS engine. - * - * @param data the TLS protocol data, as a string, to process. - * - * @return 0 if the data could be processed, otherwise the number of bytes - * required for data to be processed. - */ - c.process = function(data) { - var rval = 0; - - // buffer input data - if(data) { - c.input.putBytes(data); - } - - // process next record if no failure, process will be called after - // each record is handled (since handling can be asynchronous) - if(!c.fail) { - // reset record if ready and now empty - if(c.record !== null && - c.record.ready && c.record.fragment.isEmpty()) { - c.record = null; - } - - // if there is no pending record, try to read record header - if(c.record === null) { - rval = _readRecordHeader(c); - } - - // read the next record (if record not yet ready) - if(!c.fail && c.record !== null && !c.record.ready) { - rval = _readRecord(c); - } - - // record ready to be handled, update engine state - if(!c.fail && c.record !== null && c.record.ready) { - _update(c, c.record); - } - } - - return rval; - }; - - /** - * Requests that application data be packaged into a TLS record. The - * tlsDataReady handler will be called when the TLS record(s) have been - * prepared. - * - * @param data the application data, as a raw 'binary' encoded string, to - * be sent; to send utf-16/utf-8 string data, use the return value - * of util.encodeUtf8(str). - * - * @return true on success, false on failure. - */ - c.prepare = function(data) { - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.application_data, - data: forge.util.createBuffer(data) - })); - return tls.flush(c); - }; - - /** - * Requests that a heartbeat request be packaged into a TLS record for - * transmission. The tlsDataReady handler will be called when TLS record(s) - * have been prepared. - * - * When a heartbeat response has been received, the heartbeatReceived - * handler will be called with the matching payload. This handler can - * be used to clear a retransmission timer, etc. - * - * @param payload the heartbeat data to send as the payload in the message. - * @param [payloadLength] the payload length to use, defaults to the - * actual payload length. - * - * @return true on success, false on failure. - */ - c.prepareHeartbeatRequest = function(payload, payloadLength) { - if(payload instanceof forge.util.ByteBuffer) { - payload = payload.bytes(); - } - if(typeof payloadLength === 'undefined') { - payloadLength = payload.length; - } - c.expectedHeartbeatPayload = payload; - tls.queue(c, tls.createRecord(c, { - type: tls.ContentType.heartbeat, - data: tls.createHeartbeat( - tls.HeartbeatMessageType.heartbeat_request, payload, payloadLength) - })); - return tls.flush(c); - }; - - /** - * Closes the connection (sends a close_notify alert). - * - * @param clearFail true to clear the fail flag (default: true). - */ - c.close = function(clearFail) { - // save session if connection didn't fail - if(!c.fail && c.sessionCache && c.session) { - // only need to preserve session ID, version, and security params - var session = { - id: c.session.id, - version: c.session.version, - sp: c.session.sp - }; - session.sp.keys = null; - c.sessionCache.setSession(session.id, session); - } - - if(c.open) { - // connection no longer open, clear input - c.open = false; - c.input.clear(); - - // if connected or handshaking, send an alert - if(c.isConnected || c.handshaking) { - c.isConnected = c.handshaking = false; - - // send close_notify alert - tls.queue(c, tls.createAlert(c, { - level: tls.Alert.Level.warning, - description: tls.Alert.Description.close_notify - })); - tls.flush(c); - } - - // call handler - c.closed(c); - } - - // reset TLS connection, do not clear fail flag - c.reset(clearFail); - }; - - return c; -}; - -/* TLS API */ -forge.tls = forge.tls || {}; - -// expose non-functions -for(var key in tls) { - if(typeof tls[key] !== 'function') { - forge.tls[key] = tls[key]; - } -} - -// expose prf_tls1 for testing -forge.tls.prf_tls1 = prf_TLS1; - -// expose sha1 hmac method -forge.tls.hmac_sha1 = hmac_sha1; - -// expose session cache creation -forge.tls.createSessionCache = tls.createSessionCache; - -/** - * Creates a new TLS connection. This does not make any assumptions about the - * transport layer that TLS is working on top of, ie: it does not assume there - * is a TCP/IP connection or establish one. A TLS connection is totally - * abstracted away from the layer is runs on top of, it merely establishes a - * secure channel between a client" and a "server". - * - * A TLS connection contains 4 connection states: pending read and write, and - * current read and write. - * - * At initialization, the current read and write states will be null. Only once - * the security parameters have been set and the keys have been generated can - * the pending states be converted into current states. Current states will be - * updated for each record processed. - * - * A custom certificate verify callback may be provided to check information - * like the common name on the server's certificate. It will be called for - * every certificate in the chain. It has the following signature: - * - * variable func(c, certs, index, preVerify) - * Where: - * c The TLS connection - * verified Set to true if certificate was verified, otherwise the alert - * tls.Alert.Description for why the certificate failed. - * depth The current index in the chain, where 0 is the server's cert. - * certs The certificate chain, *NOTE* if the server was anonymous then - * the chain will be empty. - * - * The function returns true on success and on failure either the appropriate - * tls.Alert.Description or an object with 'alert' set to the appropriate - * tls.Alert.Description and 'message' set to a custom error message. If true - * is not returned then the connection will abort using, in order of - * availability, first the returned alert description, second the preVerify - * alert description, and lastly the default 'bad_certificate'. - * - * There are three callbacks that can be used to make use of client-side - * certificates where each takes the TLS connection as the first parameter: - * - * getCertificate(conn, hint) - * The second parameter is a hint as to which certificate should be - * returned. If the connection entity is a client, then the hint will be - * the CertificateRequest message from the server that is part of the - * TLS protocol. If the connection entity is a server, then it will be - * the servername list provided via an SNI extension the ClientHello, if - * one was provided (empty array if not). The hint can be examined to - * determine which certificate to use (advanced). Most implementations - * will just return a certificate. The return value must be a - * PEM-formatted certificate or an array of PEM-formatted certificates - * that constitute a certificate chain, with the first in the array/chain - * being the client's certificate. - * getPrivateKey(conn, certificate) - * The second parameter is an forge.pki X.509 certificate object that - * is associated with the requested private key. The return value must - * be a PEM-formatted private key. - * getSignature(conn, bytes, callback) - * This callback can be used instead of getPrivateKey if the private key - * is not directly accessible in javascript or should not be. For - * instance, a secure external web service could provide the signature - * in exchange for appropriate credentials. The second parameter is a - * string of bytes to be signed that are part of the TLS protocol. These - * bytes are used to verify that the private key for the previously - * provided client-side certificate is accessible to the client. The - * callback is a function that takes 2 parameters, the TLS connection - * and the RSA encrypted (signed) bytes as a string. This callback must - * be called once the signature is ready. - * - * @param options the options for this connection: - * server: true if the connection is server-side, false for client. - * sessionId: a session ID to reuse, null for a new connection. - * caStore: an array of certificates to trust. - * sessionCache: a session cache to use. - * cipherSuites: an optional array of cipher suites to use, - * see tls.CipherSuites. - * connected: function(conn) called when the first handshake completes. - * virtualHost: the virtual server name to use in a TLS SNI extension. - * verifyClient: true to require a client certificate in server mode, - * 'optional' to request one, false not to (default: false). - * verify: a handler used to custom verify certificates in the chain. - * getCertificate: an optional callback used to get a certificate or - * a chain of certificates (as an array). - * getPrivateKey: an optional callback used to get a private key. - * getSignature: an optional callback used to get a signature. - * tlsDataReady: function(conn) called when TLS protocol data has been - * prepared and is ready to be used (typically sent over a socket - * connection to its destination), read from conn.tlsData buffer. - * dataReady: function(conn) called when application data has - * been parsed from a TLS record and should be consumed by the - * application, read from conn.data buffer. - * closed: function(conn) called when the connection has been closed. - * error: function(conn, error) called when there was an error. - * deflate: function(inBytes) if provided, will deflate TLS records using - * the deflate algorithm if the server supports it. - * inflate: function(inBytes) if provided, will inflate TLS records using - * the deflate algorithm if the server supports it. - * - * @return the new TLS connection. - */ -forge.tls.createConnection = tls.createConnection; - -} // end module implementation - -/* ########## Begin module wrapper ########## */ -var name = 'tls'; -if(typeof define !== 'function') { - // NodeJS -> AMD - if(typeof module === 'object' && module.exports) { - var nodeJS = true; - define = function(ids, factory) { - factory(require, module); - }; - } else { - // <script> - if(typeof forge === 'undefined') { - forge = {}; - } - return initModule(forge); - } -} -// AMD -var deps; -var defineFunc = function(require, module) { - module.exports = function(forge) { - var mods = deps.map(function(dep) { - return require(dep); - }).concat(initModule); - // handle circular dependencies - forge = forge || {}; - forge.defined = forge.defined || {}; - if(forge.defined[name]) { - return forge[name]; - } - forge.defined[name] = true; - for(var i = 0; i < mods.length; ++i) { - mods[i](forge); - } - return forge[name]; - }; -}; -var tmpDefine = define; -define = function(ids, factory) { - deps = (typeof ids === 'string') ? factory.slice(2) : ids.slice(2); - if(nodeJS) { - delete define; - return tmpDefine.apply(null, Array.prototype.slice.call(arguments, 0)); - } - define = tmpDefine; - return define.apply(null, Array.prototype.slice.call(arguments, 0)); -}; -define([ - 'require', - 'module', - './asn1', - './hmac', - './md', - './pem', - './pki', - './random', - './util'], function() { - defineFunc.apply(null, Array.prototype.slice.call(arguments, 0)); -}); -})(); -- cgit